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6. Nonlinear problems 
J. A. Nitsche 

Lecture notes, 1986        

            

 

Problem                                             0),( =uxF
  

Aproximations                        :hS      
0)),,(( = F

   
for

  hS  

 

Regularity assumptions (roughly) 

i) There is a unique solution, 

ii) 
uFF ,  are Lischitz continuous. 

 

Error analysis 

Put  ))(,(:)( xuxFxf u=  and   −= ue :  , then    

),(),(  Rfe =
   

for
  hS  

with a remainder term 
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resp. 
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Let
hP  denote the −2L  projection relative to ),( f . Then 
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resp. 
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PuPIe hh =+−=  . 

This means, that the difference −= ue :  is a fixpoint solution of the operator T . 
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Poperties of the operator T  

 

Lemma 1: There is a  0  such that for sufficiently small 
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the operator T  maps the ball   
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 into itself. 

 

Proof: 

i) Because of 
hP  being bounded we have 
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ii) For the same reason ( −1f )     
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iii) It is 
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with 3c  being the Lischitz constant of 
uF  . 

 

From i)-iii) it follows 
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Now fix 
1c  and choose 0   according to  
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Lemma 2: For   small, the operator T  is a contradiction in 

  =
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eeB :  . 

 

Proof: 
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Now 

            )(),(),()()( 212121 eefeuFeuFeReR −+−−−=−  

)))(,(),(( 21 eeuFF uu −−=   

with 

))1(,(:),(( 21 eeuFF uu  −−−=  

and 
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 . 

From this the assertion of the lemma follows for 
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Consequence:  The operator  T   has a unique fixpoint in   =
L

eeB :  

 

 

Theorem 3: The FEM admits the error estimate 
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