6. Nonlinear problems

J. A. Nitsche Lecture notes, 1986

Problem	
---------	--

F(x,u) = 0

Aproximations $\varphi \in S_h$: $(F(\cdot, \varphi), \chi) = 0$ for $\chi \in S_h$

Regularity assumptions (roughly)

- i) There is a unique solution,
- ii) F, F_u are Lischitz continuous.

Error analysis

Put $f(x) := F_u(x, u(x))$ and $e := u - \varphi$, then

$$(fe, \chi) = (R, \chi)$$
 for $\chi \in S_h$

with a remainder term

$$R = R(e) = F(\cdot, u - \varphi) + fe$$

resp.

$$(f\varphi, \chi) = (fu - R(e), \chi) \text{ for } \chi \in S_h$$
.

Let P_h denote the L_2 – projection relative to (f, \cdot) . Then

$$\varphi = P_h(u - \frac{1}{f}R(e)) ,$$

resp.

$$e = (I - P_h)(u) + P_h(\frac{1}{f}R(e)) =: T(e) \cdot$$

This means, that the difference $e := u - \varphi$ is a fixpoint solution of the operator *T*.

Poperties of the operator T

Lemma 1: There is a $\kappa > 0$ such that for sufficiently small

$$\overline{\varepsilon} \coloneqq \inf_{\chi \in S_h} \left\| u - \chi \right\|_{L_{\infty}}$$

the operator T maps the ball

$$B_{\kappa\overline{\varepsilon}} \coloneqq \left\{ e \| \| e \|_{L_{\infty}} \leq \kappa \overline{\varepsilon} \right\}$$

into itself.

Proof:

i) Because of
$$P_h$$
 being bounded we have
 $\|(I - P_h)u\|_{L_{\infty}} \le c_1 \overline{\varepsilon}$
ii) For the same reason $(f^{-1} < \infty)$
 $\|P_h(\frac{1}{f}R(e))\|_{L_{\infty}} \le c_2 \|\operatorname{Re}\|_{L_{\infty}}$
iii) It is

$$\left\|F(\cdot, u-e) + f \cdot e\right\|_{L_{\infty}} \le c_3 \left\|e\right\|_{L_{\infty}}$$

with $c_{\rm 3}$ being the Lischitz constant of ${\it F_{\scriptscriptstyle u}}$.

From i)-iii) it follows

$$\left\| Te \right\|_{L_{\infty}} \leq c_1 \overline{\varepsilon} + c_3 c_2 \kappa^2 \overline{\varepsilon}^{-2} \leq \overline{\varepsilon} (c_1 + c_2 c_3 \kappa^2 \overline{\varepsilon}) \ .$$

Now fix $\kappa > c_1$ and choose $\overline{\mathcal{E}}_0$ according to

$$\kappa = c_1 + c_2 c_3 \kappa^2 \overline{\varepsilon}_0 \quad .$$

Lemma 2: For $\overline{\varepsilon}$ small, the operator *T* is a contradiction in

$$B_{\kappa \overline{arepsilon}} := \left\{\!\!\! e \| \!\!| e \|_{L_{\infty}} \le \kappa \overline{arepsilon} \,
ight\} \, .$$

Proof:

$$\left\| T(e_1) - T(e_2) \right\|_{L_{\infty}} \le \left\| P_h(\frac{1}{f} R(e_1) - R(e_2)) \right\|_{L_{\infty}} \le c_2 \left\| R(e_1) - R(e_2) \right\|_{L_{\infty}}$$

Now

$$R(e_{1}) - R(e_{2}) = F(\cdot, u - e_{1}) - F(\cdot, u - e_{2}) + f \cdot (e_{1} - e_{2})$$
$$= (F_{u}(\cdot, 9) - F_{u}(\cdot, u))(e_{1} - e_{2})$$

with

$$(F_u(\cdot, \mathcal{G}) \coloneqq F_u(\cdot, u - \mathcal{G}e_1 - (1 - \mathcal{G})e_2)$$

and

$$\left\|F_{u}\left(\cdot, \mathcal{G}\right) - F_{u}\left(\cdot, u\right)\right\|_{L_{\infty}} \leq \kappa \overline{\varepsilon} c_{3} \ .$$

From this the assertion of the lemma follows for

$$\overline{\varepsilon} < \min\left\{\overline{\varepsilon}_0, \frac{1}{c_2 c_3 \kappa}\right\} \cdot$$

Consequence: The operator *T* has a unique fixpoint in $B_{\kappa \overline{\kappa}} := \left\{ e \| \| e \|_{L_{\infty}} \le \kappa \overline{\kappa} \right\}$

Theorem 3: The FEM admits the error estimate

$$\left\|u-\varphi\right\|_{L_{\infty}} \leq c \inf_{\chi \in S_{h}} \left\|u-\chi\right\|_{L_{\infty}}$$