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Abstract. We construct a quantization of the Sobolev space V = H
1/2
0 (S1,R) of half-

differentiable functions on the circle provided with a symplectic action of the group QS(S1)
of quasisymmetric homeomorphisms of the circle by reparameterization. A quantum algebra
of observables, associated with this system, is defined.
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Our objective is to quantize the system in which the role of phase manifold is played by the

Sobolev space V = H
1/2
0 (S1,R) of half-differentiable functions on the circle. On this space, there is

an action of the group QS(S1) of quasisymmetric homeomorphisms of the circle, i.e., homeomor-
phisms of S1 extendable to quasiconformal homeomorphisms of the disk. So, it is natural to take,
for the group G associated with V , the semi-direct product of the Heisenberg group of the space
V with the group QS(S1) (the group G may be considered as an infinite-dimensional analog of the
Poincaré group). If the group G were smooth, then we would take its Lie algebra for the algebra of
observables on the phase manifold V . However, neither the group G nor its action on V are smooth.
So, it is impossible to construct a classical system related to the phase manifold V provided with
the action of the group G. For this reason, we propose to construct directly a quantum algebra of
observables associated with G. The quantization of the first component of G was constructed in
previous papers devoted to this topic (cf., e.g., [5–7]). In this paper, we define quantum observables
corresponding to quasisymmetric homeomorphisms of the circle.

Let us briefly describe the content of the paper. In Sec. 1, the Sobolev space V := H
1/2
0 (S1,R)

of half-differentiable functions on the circle is defined. In Sec. 2, we introduce the group QS(S1)
of quasisymmetric homeomorphisms of the circle which are boundary values of quasiconformal
homeomorphisms of the disk. The group QS(S1) acts on V by symplectic transformations given
by reparameterizations. In Sec. 3, we recall the Connes definition of quantization and introduce
the quantization space for our system that coincides with the Fock space associated with the
Sobolev space V . The last section, Sec. 4, is devoted to the construction of the quantum algebra of
observables corresponding to the group G.

1. SOBOLEV SPACE OF HALF-DIFFERENTIABLE FUNCTIONS

The Sobolev space of half-differentiable functions on the circle S1 is the Hilbert space V :=

H
1/2
0 (S1,R) consisting of functions f ∈ L2(S1,R) having Fourier series of the form

f(z) =
∑

k �=0

fkz
k , fk = f̄−k, z = eiθ,

with finite Sobolev norm of order 1/2:

‖f‖21/2 =
∑

k �=0

|k||fk|2 = 2
∑

k>0

k|fk|2 < ∞.
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The space V may be provided with a 2-form ω : V ×V → R given in terms of Fourier coefficients
of vectors ξ, η ∈ V by the formula

ω(ξ, η) = 2 Im
∑

k>0

k ξkη̄k.

This form is well defined and determines a symplectic structure on V .
Apart from the symplectic form, the Sobolev space V has a complex structure J which is given

in terms of Fourier decompositions by the formula

ξ(z) =
∑

k �=0

ξkz
k �−→ (Jξ)(z) = −i

∑

k>0

ξkz
k + i

∑

k<0

ξkz
k.

This complex structure is compatible with the symplectic form ω in the sense that they define
together a positively definite inner product g on V given by the formula g(ξ, η) := ω(ξ, Jη), or in
terms of Fourier series

g(ξ, η) = 2Re
∑

k>0

k ξkη̄k.

The complexification V C = H
1/2
0 (S1,C) of the space V is a complex Hilbert space and the inner

product g on V extends to a Hermitian inner product on V C given by

< ξ, η >=
∑

k �=0

|k|ξkη̄k.

We extend the symplectic form ω and the complex structure operator J complex-linearly to V C.

The space V C can be decomposed into the direct sum V C = W+ ⊕ W−, where W± is the
(∓i)-eigenspace of the operator J ∈ EndV C. In other words,

W+ = {f ∈ V C : f(z) =
∑

k>0

fkz
k}, W− = W+ = {f ∈ V C : f(z) =

∑

k<0

fkz
k}.

2. QUASISYMMETRIC HOMEOMORPHISMS

Recall that a homeomorphism w : D → D of the unit disk D onto itself, preserving orienta-
tion and having locally integrable derivatives, is called quasiconformal if there exists a bounded
measurable function μ ∈ L∞(D,C) with norm ‖μ‖∞ =: k < 1 for which the following Beltrami
equation

wz̄ = μwz (2.1)

holds almost everywhere on D. The function μ is called the Beltrami differential.
In the particular case when k = 0, i.e., μ = 0, equation (2.1) converts into the Cauchy–Riemann

equation and the map w is conformal.
We list here some basic properties of quasiconformal maps (a detailed exposition of the theory

of quasiconformal maps may be found in the book [1]).

(1) Quasiconformal homeomorphisms w : D → D extend continuously (even Hölder-continuou-
sly) to the boundary to homeomorphisms w : S1 → S1 of the unit circle S1 onto itself.

(2) The composition of quasiconformal maps is again a quasiconformal map. The same is true
for the maps inverse to quasiconformal ones.

(3) Solutions of Beltrami equation are uniquely defined up to conformal maps. In more detail,
if there are two solutions w1, w2 of this equation with the same Beltrami differential μ, then
the maps w1 ◦ w−1

2 and w2 ◦ w−1
1 are conformal.

(4) For any function μ ∈ L∞(D) satisfying the condition ‖μ‖∞ < 1, there exists a quasicon-
formal map w which is a solution of the Beltrami equation in D with Beltrami differential
equal to μ almost everywhere.
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The property (2) implies that quasiconformal automorphisms of the disk D form a group with
respect to composition.

We shall call an orientation-preserving homeomorphism f : S1 → S1 quasisymmetric if it extends
to a quasiconformal homeomorphism w of D onto itself. Since quasiconformal automorphisms of
the disk D form a group, the same is true also for quasisymmetric homeomorphisms of S1. Denote
by QS(S1) the group of all quasisymmetric homeomorphisms of S1 onto itself. This group may be
included into the following chain of embeddings

Möb(S1) ⊂ Diff+(S
1) ⊂ QS(S1) ⊂ Homeo+(S

1)

where Homeo+(S
1) denotes the group of orientation-preserving homeomorphisms of the unit circle

S1 and Möb(S1) is the Möbius group of fractional-linear automorphisms of the unit diskD restricted
to S1.

We associate with an orientation-preserving homeomorphism h of the unit circle S1 the operator
Th(ξ) := ξ ◦ h of change of variable acting on functions ξ ∈ V . This operator has the following
remarkable property.

Theorem 2.1. [(Nag–Sullivan) [3]] The operator Th acts from the space V into itself if and
only if h ∈ QS(S1). The operators Th with h ∈ QS(S1) generate symplectic transformations of the
space V .

3. CONNES QUANTIZATION

A classical system is given by the pair (M,A) consisting of the phase space M and algebra of
observables A. The phase space M is a smooth symplectic manifold. The algebra of observables A
is an associative algebra of functions on M provided with involution and exterior differential, i.e. a
linear map from A to the space Ω1(A) of 1-forms on this algebra satisfying Leibniz rule (cf. [2]).

The quantization of such system is given by an irreducible linear representation π of observables
from A by closed linear operators acting in a complex Hilbert space H called the quantization
space. Under this representation, the involution in A transforms into Hermitian conjugation while
the exterior derivative operator d maps to a quantum derivation operator given by the commutator
with some symmetry operator S which is a self-adjoint operator in H with square S2 = I. In other
words,

π : df �−→ dqf := [S, π(f)], f ∈ A.

We can reformulate this definition in terms of Lie algebras. Recall that a derivation of an algebra
A is a linear map D : A → A satisfying the Leibniz rule D(ab) = (Da)b+a(Db). Denote by Der(A)
the Lie algebra of all derivations of the algebra A. In terms of Der(A) the quantization is an
irreducible representation of the Lie algebra Der(A) in the algebra of closed linear operators in the
quantization space H provided with commutator as the Lie bracket.

The Lie algebra Derq(A), generated by the quantum derivation operators dqf with f ∈ A, is
called the quantum algebra of observables corresponding to the algebra of observables A while the
operators dqf are called the quantum observables.

In our case, the role of the quantization space H will be played by the Fock space associated
with the Sobolev space V . Recall that the complex structure J on V generates the decomposition
of the complexified space V C into the direct sum

V C = W+ ⊕W−

of (∓i)-eigenspaces of operator J . This decomposition is orthogonal with respect to the Hermitian
inner product < z,w >= ω(z, Jw) on V C generated by J and ω.

The Fock space F is the completion of the algebra of symmetric polynomials in the variables
z ∈ W+ with respect to the norm generated by the inner product < ·, · >.

In more detail, denote by S(W+) the algebra of symmetric polynomials in the variables z ∈ W+

and introduce on it the inner product generated by the inner product < ·, · >. On monomials of
the same degree, it is given by the formula

〈z1 ⊗ · · · ⊗ zn, z
′
1 ⊗ · · · ⊗ z′n >:=

∑

{i1,...,in}
< z1, z

′
i1

> · . . . · < zn, z
′
in

>
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where summation is taken over all permutations {i1, . . . , in} of the set {1, . . . , n} (inner product
of monomials of different degrees is set to zero). The inner product on monomials is extended by
linearity to the whole algebra S(W+).

The Fock space F ≡ F (V C) is the completion of the algebra S(W+) with respect to the norm
< ·, · >.

If {wn}∞n=1 is an orthonormal basis of the space W+, then, for the orthonormal basis of the Fock
space F , we can take monomials of the form

PK(z) =
1√
k!

< z,w1 >k1 · . . . · < z,wn >kn , z ∈ W+,

where K = (k1, . . . , kn, 0, . . . ) is a finite collection of natural numbers ki ∈ N, k! = k1! · . . . · kn!.

4. QUANTIZATION OF THE SOBOLEV SPACE
OF HALF-DIFFERENTIABLE FUNCTIONS

For the phase space of our system we take the Sobolev space V of half-differentiable functions.
On this space, we have a natural action of the group G consisting of the two following components.

The first component of G is given by the Heisenberg group Heis(V ) which coincides with the central
extension of the Abelian group V . In other words, Heis(V ) is the direct product Heis(V ) = V ×S1

provided with the group operation given by the formula

(v1, s1) · (v2, s2) =
(
v1 + v2, s1s2e

iω(v1,v2)
)
.

For the second component of G, we take the group QS(S1) of quasisymmetric homeomorphisms of
the circle S1 acting on V by reparameterization, i.e., by change of variable. By definition, G is the
semidirect product of the group Heis(V ) and the group of quasisymmetric homeomorphisms of the
circle QS(S1). We can regard it as an infinite-dimensional analog of the Poincaré group which is
the semidirect product of the group of translations and the group of hyperbolic rotations.

If G were a Lie group acting on V by smooth symplectic transformations, then we could take
the Lie algebra of this group for the algebra of observables A. However, neither the group G nor
its action on the Sobolev space V are smooth. For this reason, we cannot construct the classical
system corresponding to the phase space V with the group G acting on it. Instead, we shall directly
define the quantum system associated with V . In other words, we change our original point of view
on quantization and first construct the quantum system associated with the space V and the group
G, passing by the stage of construction of the classical system.

We turn to the construction of the quantum algebra of observables associated with the Sobolev
space V and the group G.

We start from the first component corresponding to Heisenberg group Heis(V ). Note that any
bounded function f on the circle S1 generates the bounded multiplication operator Mf in the
Hilbert space V C acting by the formula

Mf : h ∈ V C �−→ fh ∈ V C.

The symmetry operator S in this case coincides with the Hilbert transform:

(Sh)(φ) =
1

2π

∫ 2π

0

K(φ,ψ)h(ψ)dψ, h ∈ V C,

where the integral is taken in the principal value sense and the Hilbert kernel K is equal to

K(φ,ψ) = 1 + i cot
φ− ψ

2
.

For φ → ψ it behaves like 1 + 2i/(φ − ψ).
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The differential of a general function f ∈ V C is not defined in the classical sense, however, its
quantum analog dqf := [S,Mf ] is correctly defined as a bounded linear operator in the space V C.
It is given by the formula

(dqf)(h)(φ) =
1

2π

∫ 2π

0

kf (φ,ψ)h(ψ)dψ, h ∈ V C,

where kf (φ,ψ) = K(φ,ψ)(f(φ)−f(ψ)). For φ → ψ the kernel kf (φ,ψ) behaves like const· f(φ)−f(ψ)
φ−ψ .

The quasiclassical limit of this operator, obtained by its restriction to smooth functions and taking
the trace on the diagonal φ = ψ, coincides with the multiplication operator h �→ f ′ ·h. The operators
dqf are the quantum observables corresponding to the elements f ∈ V .

In order to define the quantum observables corresponding to elements g ∈ QS(S1), it is conve-
nient to switch from the circle S1 to the real line R. Then the space V will be replaced by the
Sobolev space H1/2(R) of real-valued half-differentiable vector-functions on the real line (still de-
noted by V ), and QS(S1) will be replaced by the group QS(R) of quasisymmetric homeomorphisms
of the real line R extending to quasiconformal homeomorphisms of the upper half-plane.

According to a theorem of Reimann [4], the tangent space to QS(R) at the origin coincides with
the Zigmund space Λ(R) consisting of continuous functions f(x) satisfying the condition:

|f(x+ t) + f(x− t)− 2f(x)| � C|t|
uniformly with respect to x ∈ R, t > 0.

This motivates the definition of the differentiation operator dqg for g ∈ QS(R) as

dqg(v) =

∫

R

g(x+ t) + g(x− t)− 2g(x)

t
v(t)dt, v ∈ V C.

Using this operator, we can introduce the quantum observables corresponding to elements
g ∈ QS(R) as the operators T q

g h := dqh(g) ◦ dqg. The quasiclassical limit of the operator T q
g

coincides with the multiplication operator h �→ h′(g)g′.
This operator can be extended to the whole Fock space F in the following way. We define it first

on the elements of the orthonormal basis of F given by the monomials PK(z) (cf. Sec. 2) by the
Leibniz rule. We then extend it to the whole algebra of symmetric polynomials in variables the W+
by linearity. The closure of the obtained operator yields an operator T q

g h in the Fock space F . In
the same way, the operator dqh extends to a closed operator dqh in the Fock space F .

The required quantum algebra of observables, associated with the Sobolev space V provided with
the action of the group G is the Lie algebra Derq generated by the operators dqh and T q

g h acting
in the Fock space F with g ∈ QS(R), h ∈ V .
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