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The entire Zeta function and its related duality equation are given by ([EdH] 1.8) 
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Let H and M denote the Hilbert and the Mellin transform operators. For the Gaussian 
function )(xf  it holds 
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leading to the entire Zeta function representation in the form 
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The central idea is to replace  
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with   )(:)( xfHxfH  , 0)0(ˆ Hf  and 
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A related alternative entire Zeta function (with same zeros as )(s ) can be defined by 
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one gets the duality equation 
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The replacement above is motivated by the challenge to formulate the term 
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as a transform ([EdH] 10.5) 
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The underlying issue is analog to the issue building the (“continuous”) analog of Euler’s 

ludicrous formula 
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which is  
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The latter one is of course nonsense, because the values of s  for which the above 

integrals converge are mutually exclusively – the first integral being convergent for  

1)Re( s  and the second integral being convergent for  1)Re( s  - but it does not suggest 

that the formal transform  
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is zero. The above issue leads to the well-defined analytical auxiliary function ([EdH] 

10.3) 
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fulfilling 
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The underlying “trick” is basically about the replacement of 
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in order to achieve 0)0(

~
)0(ˆ)0(  fff , while keeping “somehow” the analytical properties 

of )(xf (differentiate and multiply again with x ). Unfortunately the corresponding self-

adjoint operator with Mellin transform ))1(/()(2 sss  in the form 
 

  
 





 
























00

1 2222

u

du
eu

u

du
eu unsuns   

 

is only formally defined, as this operator has no transform at all, because the integral 

does not converge for any Cs . 

 

The central idea above is therefore nothing else then replacing )(xf  by an alternative 

function )(xf , which ensures 0)0(
ˆ

f  while keeping the analytical properties of )(xf  

unchanged in a 2L sense. The underlying “purpose” of the “trick” above is fulfilled by 

appropriate properties of the Hilbert transform operator. The primary property is that the 

constant Fourier term of a Hilbert transformed function or distribution is vanishing. 
 

The properties linking to the Berry conjecture are related to the Hermite polynomials and 

its corresponding Hilbert transforms. Both systems build an orthogonal system spanning 

the   ),(2L  Hilbert space, while each Hermite polynomial is orthogonal to its 

corresponding Hilbert transform. The basis Hermite polynomial )(0 xH  plays a specific role 

in the harmonic quantum oscillator (ground state energy) model, i.e. its corresponding 

Hilbert transform provides an appropriate alternative model. 

 

As it further holds 
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it follows, that in case of )(xf  has non-zero mean, i.e.  0)0(ˆ f  then   )(xfH  only decays 

like x/1 at infinity. In particular it is not bounded on 1L . This property provides a link to 

the commutator concept, which plays also a key role in the theory of Pseudo-Differential 

Operators (PDO).   



He calculation of the analogue series representation to the function )(s on the critical line 

([EdH] 1.8) 
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whereby 
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is straightforward. 

 

 

Remark: On the critical line it holds 
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We further note the series representation ([GrI] 1.411, 1.518) 
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From the duality equation one gets ([EdH] 1.13) 
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Riemann derived his famous approximation error function (see iii) below) from the 

identity 
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while proving the following mappings ([EdH] 1.13 ff.) 
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The alternative entire Zeta function representation enables a corresponding alternative 

approximation error function with alternative terms to iii) and iv) above. 
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