A (geometrical) Hilbert space based quantum gravity model

Klaus Braun
December 2, 2020

Dedicated to my son Mario
on the occasion of his 29th birthday

Prolog

In the book „The Mathematical Reality, Why Space and Time are an Illusion“, (UnA1), (**), the concept of „Vision – Matematization – Simplification“ is proclaimed. The overall „Vision“ is about a simplification of the incompatible SMEP and the cosmology model, by reducing the number of current „constants of nature“, especially regarding the „constant speed of light“ (→ variable speed of light, (UnA)) and the „Planck constant“.

This and other related papers address the „Matematization“ piece of the above „Vision“ regarding the ground-breaking idea going back to Einstein (EIA3), (**), to explain the gravitation directly from characteristics of the universe (UnA). It is basically achieved by the mathematical concept of a coarse-grained „kinematical“ energy Hilbert space H_1, compacted embedded into a $H_{1/2}$ (energy) Hilbert space. Physical notions, like „space-time“, „density“, „action“, „Planck’s quantum of action“, „forces“, ... become mathematical & physical reality in this (coarse-grained, see also (BrK), and truly „fermions“) kinematical H_1 „world“, complementary to a purely (mathematical) truly „bosons“ potential energy H^0 „world“.

The primarily affected PDO in the context of the proposed quantum gravity theory are the Laplace operator (the Prandtl operator, Δu), the Dirac’s physical „point charge“ model of „ideal functions“ $\delta \in H_{-1/2}$, \in denotes the space dimension, and $\varepsilon > 0$, (DIP1)) by a „EP point charge“ model $\in H_{-1/2} = L_2 \otimes L_2^\perp$.

The overall prize to be paid for this complexity reduction is the following:

The (thermo-) statistics Hilbert space L_2 is extended to $H_{-1/2} = L_2 \otimes L_2^\perp = H_0 \otimes H_{1/2}^\perp$, and standard PDE variational representations in the form $u \in D_0(B); (Bu, v)_0 \forall v \in H_0$, are considered as approximations to extended (weak) variational representations in the form $u \in D_{-1/2}(B); (Bu, v)_{-1/2} \forall v \in H_{-1/2}$.

(*) ... however, perception is (physical) reality, like the Michelson-Morley experiment, but with different possible interpretations, (SuL) 1.6: (1) Einstein: Maxwell equations describe a (provisionally; see (11), next page) physical law (2) Lorentz: „light speed is caused by the movements of bodies through the ether“.

(**) ... „Nothing forces us to assume that ... clocks have to be seen as running at the same speed“, A. Einstein

(***) A decomposition of a Hilbert space H into an orthonal sum of two spaces H^0 and H^\perp with corresponding projection operators P^0 and P^\perp enables a definition of a „potential“ and a related „potential operator“: for x being an element of H its „potential“ is about an indefinite metric given by $\langle [\nu M \{11.1\}] \varphi(x) \rangle = (i \ddot x)^2 = |P^0 x|^2 - |P^\perp x|^2$ with a related potential operator $\mathbf{W}(x)$ in the form (VaM) (11.4) $\mathbf{W}(x) = \frac{1}{2} \text{grad} \varphi(x) = P^0(x) - P^\perp(x)$.
The proposed quantum gravity model reduces the zoo of elementary particles of the SM to one single EP (which Piemelj called „mass element“) with or w/o existing (mathematically defined) classical density, while only the first one can be affected resp. allows the definition of kinematical notions in correspondingly defined PDE models.

The impact of the proposed one-single EP model and a correspondingly revisited Newton potential equation in a weak $\mathbb{R}_{1+2} = L_2 \otimes L_1$ based framework puts the spot on „Einstein’s lost key“, (EIA3), (UnA), which is about the concept of a variable speed of light based on clocks of various types at points with different gravitation potentials (UnA), (UnA1). Schrödinger’s formula (ScE3) told us, that the negative potential of the total mass of the universe at a given point of observation (calculated with the valid gravitation constant G at this point) corresponds to half of the quadrant of the speed of light, $\frac{c^2}{2}$. This approach of Schrödinger in (ScE3) was rediscovered by R. Dicke, (DIR), (UnA1); (we note that the momentum is given by $\frac{c}{2} \cdot v^2$) (*).

One of the central notions in theoretical physics is about the „potential“, which is more specifically about a „potential“, „potential functions“ and „potential operators“, e.g. (Ch), (SuL), (VaM). In case of the Poisson equation the potential function is about the solution of the Poisson equation, the Laplace operator $\Delta = \nabla \nabla$ (with appropriately defined Dirichlet or Neumann boundary conditions, as part of the underlying operator domain), is about the potential operator, and the potential $p(u)$ itself of the potential function u is defined by $p(u) = \frac{1}{2} \| u \|_E^2$.

In the context of radiation and transport partial differential equations the Neumann boundary condition is considered as more problem adequate than the Dirichlet boundary conditions. The Neumann potential operator is related to the Prandtl operator

$$(\Pi_0)(x) := \frac{1}{4\pi} \int_{\mathbb{R}^3} v(y) \frac{\cos \Phi_y}{|x-y|} \; dS_y = f(x),$$

when seeking the solution of the Neumann boundary value problem

$$(\dagger) \quad \Delta u = 0 \quad \text{in} \; \mathbb{R}^3 - S,
\frac{\partial u}{\partial n} = f \quad \text{on} \; S.$$

With respect to the proposed energy Hilbert space $H_{-1/2}$ we note that the Prandtl operator

$$\Pi : H_{-1/2} \to H_{-1/2}$$

is bounded, the solution function is represented as double layer potential

$$u(x) := \frac{1}{4\pi} \int_{\mathbb{R}^3} v(y) \frac{\cos \Phi_y}{|x-y|} \; dS_y \in H_1(\mathbb{R}^3 - S),$$

with unknown function $v(y)$ to be determined by (\dagger), and the exterior Neumann problem admits one and only on general solution, (LII), chapter 4.

(*) (EIA) p. 52: „Die Gesetze aber, nach denen sich Ströme und Ladungen verhalten, sind uns nicht bekannt. Wir wissen wohl, dass die Elektrizitäten in Elementarkörperchen (Elektronen, positiven Kernen) bestehen, aber wir begreifen es nicht vom theoretischen Standpunkt aus. Wir kennen die energetischen Faktoren nicht; welche die Anordnung der Elektrizität in Körperchen von bestimmter Grösse und Ladung bewirken, und alle Versuche, die Theorie nach dieser Seite hin zu vervollständigen, sind bisher gescheitert. Wir können daher, falls wir überhaupt die Maxwellischen Gleichungen zur Grundlage legen dürfen, den Energietensor für die elektromagnetischen Felder nur ausserhalb der Elementarkörperchen an den Stellen, den einzigen, wo wir einen vollständigen Ausdruck für den Energietensor aufgestellt zu haben glauben, $\frac{1}{2} \| u \|_E^2 = 0$; ... p.54: „wir wissen heute, dass die Materie aus elektrischen Elementarkörperchen bestünde, sind aber nicht im Besitz der Feldgesetze, auf welchen die Konstitution jener Elementarkörperchen beruht.“ ... p. 81. „Für ein Feldgesetz der Gravitation muss die Poissongleichung der Newtontheorie zum Muster dienen. ... Die Untersuchungen der speziellen Relativitätstheorie haben uns gezeigt, dass an die Stelle des Skalars der Massendichte der Tensor der Energiedichte zu treten hat. In diesem ist nicht nur der Tensor der Energie der ponderablen Materie, sondern auch der der elektromagnetischen Energie enthalten. Wir haben sogar gesehen, dass unter dem Gesichtspunkt einer tieferen Analyse der Energiebauer der Materie nur ein vorläufiges, wenig Telegraphierendes Darstellungsmittel für die Materie anzusehen ist. In Wahrheit besteht ja die Materie aus elektrischen Elementarkörperchen und ist selbst Teil, ja der Hauptteil des elektromagnetischen Feldes auszumachen. Nur der Umstand, dass die wahre Gesetze des elektromagnetischen Feldes für sehr intensive Felder noch nicht hinreichend bekannt sind, zwingt wir vorläufig dazu, die wahre Struktur dieses Tensor bei der Darstellung der Theorie unberücksichtigt zu lassen.” (UnA1): The expansion and the total mass of the universe are related to Newton’s gravitation constant G. Einstein’s equivalence principle (inert mass is equivalent to heavy mass) corresponds to the Mach principle, stating that the route cause of gravitation is the result of the total mass of the universe. Schrödinger’s formula (ScE3) told us, that the negative potential of the total mass of the universe at a given point of observation (calculated with the valid gravitation constant G at this point) corresponds to half of the quadrant of the speed of light, $\frac{c^2}{2}$. We note that the momentum is given by $\frac{c}{2} \cdot v^2$.

(EIA3): „Nach dem soeben Gesagten müssen wir aber an Stellen verschiedener Gravitationspotentiale uns verschieden hochschaffener Uhren zur Zeitmessung bedienen. Wir müssen zur Zeitmessung an einem Orte, der relativ zum Koordinatensystem aus dem Gravitationspotential ϕ ist, eine Uhr verwenden, die an den Koordinatensystemversetzungen $\pm (1 + \frac{\phi}{c^2})$ man langsam verläufe als jene Uhr, welche am Koordinatensystemversetzung die Zeit gemessen wird. Nennen wir c_ϕ die Lichtgeschwindigkeit im Koordinatensystem, so wird daher die Lichtgeschwindigkeit c in einem Orte vom Gravitationspotential ϕ durch die Beziehung $c = c_\phi (1 + \frac{\phi}{c^2})$ gegeben sein. Das Prinzip von der Konstant der Lichtgeschwindigkeit gilt nach dieser Theorie nicht in der genannten Fassung, wie es der gewöhnlichen Relativitätstheorie zugrunde gelegt zu werden pflegt.“

(π) (UnA3): p. 78: „The principle of the constancy of the speed of light can be maintained only by restricting to space-time regions with a constant gravitational potential“, Annalen der Physik 38 (1912) p. 355-369.

(π) (EIA): p. 127: „Einstein must also have assumed the coincidences $\frac{c}{c_\phi}, \frac{\cos \Phi_y}{|x-y|}$, i.e. $\frac{1}{2} \| u \|_E^2$; this means that gravitation constant is related to the total mass of the universe, (which puts the spot on Mach’s principle), i.e. the gravitation constant is that small, because the total of the universe is that large (see also (Ra), (SD)).

the formula $\frac{1}{2} \| u \|_E^2$ allows an alternative interpretation of the observed deviation of the forecasted and measured speed of the Pioneer sondes (IO), (SCL), (ToV); see also Unzicker A., Bankrupting Physics.”
Half of the four Maxwell equations,
\[
\text{div} (\vec{B}) = 0, \quad \text{rot} (\vec{E}) + \frac{\partial}{\partial t} \vec{B} = 0,
\]
are „just“ a mathematical consequence of the definition of the magnetic field \(\vec{B}\). They are derived via a differentiating process, applying the div- resp. the rot-operator to the definition of the magnetic field \(\vec{B} = \text{rot}\vec{A}\), whereby \(\vec{A}\) denotes an arbitrary (differentiable) vector field. In other words, there are no magnetic charges foreseen telling the fields, how to vary, (SuL).

The other half of the Maxwell equations,
\[
\text{div} (\vec{E}) = \rho, \quad \text{rot} (\vec{B}) - \frac{\partial}{\partial t} \vec{E} = \vec{j},
\]
are the consequences of a more specifically defined vector field \(\vec{A}\). In this case there is an underlying scalar field of \(\vec{A}\) regarding the time variable, reflecting the space-time geometry structure. It enables the definition of an electric field \(\vec{E}\) given by, (SuL)
\[
\vec{E} = -\frac{\partial \vec{A}}{\partial t} - \text{grad} (A_0).
\]

In other words, only electric charges tell the electro-magnetic fields, how to vary. Reversely, there is only the Lorentz force
\[
\vec{F} = e(\vec{v} \times \vec{B}),
\]
where „the magnetic field tells the electrons, how to move“. From a physical modelling perspective, this „imbalance“ challenge has been overcome by the concept of „displacement current“. The Maxwell equations provided the baseline concepts for Einstein’s gravity theory.

The electrodynamic in the special relativity theory is described by the four-vector formalism of the space-time given by the D’Alembert operator equation,
\[
\left(\frac{\partial^2}{\partial t^2} - \Delta\right) \vec{A} = \frac{4\pi}{c^2} \vec{j},
\]
with the four-vector potential \(\vec{A}\), where its curvature determines the electric and magnetic field forces, and \(\vec{j}\) denotes the four-current-density.

Regarding the physical notions of „flux“ and „mass element“ we refer to the extended definitions from J. Plemelj (PlJ). Plemelj’s (Neumann boundary condition based) notion „flux“ is defined by \(\tilde{U}(\sigma) = -\oint_{\sigma} \frac{\partial \tilde{U}}{\partial n} d\sigma\) (\(\sigma, \sigma_0 \in \text{surface}\)), whereby \(\tilde{U}\) relates to the conjugate of \(U(\sigma)\), resp. its Hilbert transform. In case \(\tilde{U}(\sigma)\) is differentiable, this „flux“ definition corresponds to the standard Neumann boundary operator \(\frac{\partial \tilde{U}(\sigma)}{\partial n}\). However, in case \(\frac{\partial \tilde{U}}{\partial n}\) is not defined (i.e. \(\tilde{U}(\sigma)\) is not differentiable), the „flux“ \(\tilde{U}(\sigma)\) is a still well defined term. Plemelj’s concept was developed for the logarithmic potential \(n = 2\), which is related to the Cauchy-Riemann Differential equations. The generalization to dimensions \(n > 2\) (div\(A = 0\), rot\(A = 0\) (RuC)) leads to the concept of Riesz transforms (STE1).

Mathematically speaking, quantum theory is about a Hilbert space based linear operator theory. Sobolev space based classical (non-linear) partial differential operators can be equivalently re-formulated in a weak variational form. The Sobolev baseline Hilbert space, the Lebesgue space \(L_2 = H_0^1\) is reflexive with respect to its underlying inner product \((u,v)_{L_2} = (u,v)_{L_2}\). In case a considered non-linear partial differential operator \(\bar{K}\) can be represented in the form \(\bar{K} = A + K + \bar{R}\) with \(A\) linear, self-adjoint and positive definite, \(A^{-1}\), \(K\) linear, and \(A^{-1}\) is compact on appropriately defined domains, then there exist discrete spectra and corresponding eigen-function based orthogonal systems, enabling the definition of corresponding isomorph Hilbert scales \(H^\beta_{0,}\) \(H^\beta_{1,}\) \(\beta \in R\). For a related variational calculus, which can be applied to Hamiltonian systems, nonlinear wave equations and problems related to surface of prescribed mean curvature (i.e. going far beyond purely elliptic PDE), we refer to (ChJ).

The considered decompositions \(H_{-1/2} = L_2 \otimes l^1_2\) resp. \(H_{1/2} = H_1 \otimes H^1_2\) are about the „coarse-grained“ (discrete spectrum/orthogonal eigenfunctions based) Hilbert space \(L_2\) resp. \(H_1\), and closed sub-spaces \(l^1_2\) resp. \(H^1_2\) of \(H_{-1/2}\).

(WeH) p. 171: „On the basis of rather convincing general considerations, G. Mie in 1912 pointed out a way of modifying the Maxwell equations in such a manner that they might possibly solve the problem of matter, by explaining why the field possesses a granular structure and why the knots of energy remain intact in spite of the back-and-forth flux of energy and momentum“.
In the Einstein's field equations „space-time geometry tells mass-energy how to move” and „mass-energy tells space-time geometry how to curve”. In the Maxwell equations „charges tell the electromagnetic fields how to vary”. Usually both equations systems are considered w/o any boundary or initial value conditions; but such conditions are prerequisites to ensure well defined problems (*).

The Einstein operator is given by \(G = R_{\mu\nu} - \frac{R}{2} g_{\mu\nu} \) with the corresponding gravity field equations \(G = -\kappa T_{\mu\nu} \) and the corresponding motion equations \(\frac{\partial}{\partial x^\mu} \left(g_{\alpha\beta} \frac{\partial x}{\partial x^\alpha} \right) = \frac{1}{2} \frac{\partial g_{\alpha\beta}}{\partial x^\mu} \frac{\partial x^\alpha}{\partial x^\delta} \frac{\partial x^\beta}{\partial x^\delta} \) for the path \(x^\mu = x^\mu(t) \) of a particle.

The change from the Newton model is about a change from the Newton potential energy \(-\Phi = -4\pi G p \) (applying the Dirac (delta) function on the right side of the PDE) to the Einstein equation \(G = -\kappa \left(T_{\mu\nu} \right) \), going along with a change from the motion equations from

\[
\frac{d^2x}{dt^2} = -g \text{grad} \Phi \rightarrow \frac{d}{dt} \left(g_{\mu\nu} \frac{dx}{dt} \right) = \frac{1}{2} \frac{\partial g_{\mu\nu}}{\partial x^\gamma} \frac{\partial x^\alpha}{\partial x^\gamma} \frac{\partial x^\beta}{\partial x^\gamma}.
\]

Instead of one potential equation we now have 10 equations with 10 potentials \(\Phi_{\mu\nu} \); instead of a linear operator, we now have a non-linear operator, i.e. the gravity potential is no longer the sum of single gravitation potentials. Additionally, there is a circle structure, i.e. the potentials are functions of the \(T_{\mu\nu} (\Phi_{\mu\nu} = f(T_{\mu\nu})) \), while the space-time structure are functions of the potentials \((f(\Phi_{\mu\nu})) \). The matter, as described by the energy-momentum tensor \(T_{\mu\nu} \) reflecting the principles of energy and momentum conservation, generates a curvature of the space-time and particles move along of geodesics. Therefore, things become more complicated, a circle principle is added (the stage enables the actors, while the actors build resp. influence the stage), and the PDE model is no longer well defined (no boundary and initial values, etc.), the vacuum energy problem occurs, ... and all just to achieve an improved \((-10^{-3} \rightarrow -10^{-14}) \) mathematical model being validated by very few observed gravitational effects. On the other side there were/are alternative gravitation models existing, (UnA1):

(DIR): „The great difficulty with constructing a theory of gravitation is the paucity of experimental evidence. After 40 years there are still only four famous observational checks of the theory of relativity. Of these only two have any real accuracy“.

Einstein concluded the constancy of the light velocity proclaiming that the Maxwell equations describe a physical law, later „confirmed” by the Michelson-Morley experiment. His great physical achievement in this context was the discovery of the space-time symmetry structure of this assumed physical law given by the Lorentz transform. Lorentz himself did not accepted this physical law, he only considered it as approximation to whatever. Space-time structure is the mathematical pre-requisite defining the electric field. Therefore, proclaiming the conclusion „space-time symmetry” out of the Maxwell equation proclaimed as a physical principle is a kind of self-fulfilling prophecy.

Lorentz’ interpretation of the Michelson-Morley experiment was, (SuL) 1.6:

„light speed is caused by the movements of bodies through the ether“.

Unzicker A., „Vom Urknall zum Durchknall“ (english: Bankrupting Physics,), 2009: Dirac applied the special relativity theory to the Schrödinger equation leading the the attribute of „spin” of an elementary particle. The ratio of the masses of a proton and an electron (about 1836.15 ...) are still w/o any model explanations. The Planck (action quantum) constant \(h \) corresponds approximately to \(\hbar \sim \hbar p \), whereby \(p \sim 1.3 \cdot 10^{-8} \) m/s. \(\hbar \) leads Dirac to an estimate of the total number of elementary particle in the universe \(N_{\text{universe}} \sim 10^{80} \), (DiP).

An essential concept of the „standard” model of cosmology is „dark energy”. Its existence is postulated to explain the cosmic acceleration, inferred from the Hubble diagram of Type Ia supernovae data. In (NJT) it is shown that those data are still quite consistent with a constant rate of expansion (**). (*)

(*) How the magnetic field of the earth, which enabled and still ensures all „life” on earth, has been formed, while its existence is obviously guaranteed by the dynamo effect caused by the inertia rotation of the (thermodynamical generated) hot core of the earth? In the theory of Sciama „on the origin of inertia” (ScD) (see also (UnA)), inertia effects arise from the gravitational field of a moving body, where for simplicity, gravitational effects are calculated in flat space-time by means of Maxwell-type field equations. One considered case of possible motion of this system, in which the universe and body rotate with constant angular velocity about an axis through the centre of the body perpendicular to the line joining it to the particle, is modelled by a not zero gravomagnetic field, defined by a magnetic field of a rotatin charge distribution in the form \(E = \text{curl} \vec{A} = 25 \).

(**) (DiP) The modern study of cosmology is dominated by Hubble’s observations of a shift to the red in the spectra of the spiral nebulae—the farthest parts of the universe—indicating that they are receding from us with velocities proportional to their distances from us. These observations show us, in the first place, that all the matter in a particular part of space has the same velocity (to a certain degree of accuracy) and suggest a model of the universe in which there is a natural velocity for the matter at any point, varying continuously from one point to a neighbouring point. Referred to a four-dimensional space-time picture, this natural velocity provides us with a preferred time-axis at each point, namely, the time-axis with respect to which the matter in the neighbourhood of the point is at rest. By measuring along this preferred time-axis we get an absolute measure of time, called the epoch. Such ideas of a preferred time-axis and absolute time depart very much from the principles of both special and general relativity and lead one to expect that relativity will play only a subsidiary role in the subject of cosmology. This first point of view, which differs markedly from that of the early workers in this field, has been much emphasized recently by Milne.

(DiP): One of the most attractive ideas in the Lorentz model of the electron, the idea that all mass is of electromagnetic origin, appears at the present time to be wrong, for two separate reasons. First, the discovery of the neutron has provided us with a form of mass which it is very hard to believe could be of electromagnetic nature. Secondly, we have the theory of the positron a theory in agreement with experiment so far it is known – in which positive and negative values for the mass of an electron play symmetrical roles. This cannot be fitted in which the electromagnetic idea of mass, which insists on all mass being positive, even in abstract theory. ... We are faced with the difficulty that, if we accept Maxwell’s theory, the field in the immediate neighbourhood of the electron has an infinite mass. (***)

The „standard” model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present – as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these “instantaneous candles” indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.
The general solution of the Schrödinger equation is given by
\[\phi(\vec{x}, t) = \sum_n c_n e^{-i \omega_n (\vec{x} - \vec{\phi}_n)^T} \phi_n(\vec{x}). \]

The Schrödinger field equation for the electrons wave functions \(\psi(\vec{x}, t) \) reflects in the right way the experimental verified relationship between the group velocity and the wave number. The wave functions themself do have no physical meaning. But the intensities of fields, as e.g. (from Maxwell theory) the energy density and the Poynting vector or (from quantum mechanics) the Hamiltonian operator of a free string
\[H = \frac{1}{4 \pi} P_0^2 + \sum_\omega \frac{1}{2} \omega^2 Q_n^2 = \frac{1}{4 \pi} P_0^2 + \frac{1}{2} \sum_\omega \hbar \omega \rho_0 A_n^* A_n + \frac{1}{2} \sum_\omega \hbar \omega_n, \]
are modeled as squares of field quantities. We note that the series
\[E_n = \frac{1}{2} \sum \hbar \omega_n \]
is divergent. The current interpretation of the "square concept" above is that the quantity
\[\rho(x, t) := |\psi(\vec{x}, t)|^2 \]
models the density of the matter field of electrons. Based on this interpretation the continuity equations (which is the Schrödinger equation) is given by
\[\dot{\rho} + div \left(\frac{\hbar}{2m} \psi^* \vec{V} \psi - \psi \vec{V}^* \psi \right) = 0. \]

The ground state energy is not measurable. Its chosen value is therefore arbitrarily, motivated by the fact, to keep calculations as easily as possible, and, mainly, to ensure convergent integrals/series. Energies of freely composed systems should be additive. For photons in a box section (cavity) there are infinite numbers of frequencies \(\omega_i \). If one assigns any frequency a ground state energy value \(\hbar \omega_i/2 \), then the ground state energy without photons has the infinite energy
\[\frac{1}{2} \sum \hbar \omega_i = \infty. \]

The miss-understanding, that the ground state energy is fixed and uniquely defined, starts already in the classical physics: The definition of the Hamiltonian
\[H = \frac{p^2}{2m} + \frac{1}{2} \omega^2 x^2 =: T + V \]
defines the not measurable ground state energy in that way, that the state of lowest energy, the points \((x, p) = (0,0) \) in the phase space, is defined as "zero". The underlying quantum mechanics model is about Hermitian operators, physical observables and wave packages.

The spectrum of a hermitian, positive definite operator \(\hat{A} : D(\hat{A}) \to H \) with domain \(D(\hat{A}) \) in a complex-valued Hilbert space \(H \) is discrete. This property enables an axiomatic building of the quantum mechanics, whereby, roughly speaking, physical states are modelled by the elements of the Hilbert space, observables of states are modelled by the hermitian operator \(\hat{A} \) and the mean value of the observable \(\hat{A} \) at the state \(\psi \) with \(\|\psi\| = 1 \) is modelled by the inner product \(\langle \hat{A} \psi, \psi \rangle \).

In other words, the expectation value of an operator \(\hat{A} \) is given by
\[\langle \hat{A} \rangle = \int \psi^* \hat{A} \psi \ d\vec{r} \]
and all physical observables are represented by such expectation values. Obviously, the value of a physical observable such as energy or density must be real, so it's required \(\langle \hat{A} \rangle \) to be real. This means that it must be \(\langle \hat{A} \rangle = (\hat{A})^* \), or
\[\langle \hat{A} \rangle = \int \left(\int \hat{A} \psi_1 \ d\vec{r} \right) \psi_2 \ d\vec{r} = \int \left(\hat{A} \psi_1 \ d\vec{r} \right) \psi_2 \ d\vec{r} = \left(\int \hat{A} \psi_1 \ d\vec{r} \right)^* \psi_2 \ d\vec{r} = \langle \hat{A} \rangle^* \]

Operators \(\hat{A} \), which satisfy this condition are called Hermitian. One can also show that for a Hermitian operator,
\[\int \psi_1^* \hat{A} \psi_2 \ d\vec{r} = \int \left(\hat{A} \psi_1 \ d\vec{r} \right) \psi_2 \ d\vec{r} \]
for any two states \(\psi_1 \) and \(\psi_2 \).
For the eigenvalue problem of a self-adjoint, positive operator A

$$A\phi = \lambda \phi$$

the eigenvalues $[\lambda]$ are the discrete spectrum λ_n with either finite or countable infinite set of values

$$A\phi_n = \lambda_n \phi_n, \|\phi_n\|^2 = 1.$$

In this case the mean value \bar{A} of A is given by

$$\bar{A} = \langle A\psi, \psi \rangle$$

Let w_n the probability, that the eigenvalue occurs of a measurement of the observables A then it holds for the mean value \bar{A} of A

$$\bar{A} = \sum_n w_n \lambda_n = \sum_n w_n \langle \phi_n, A\phi_n \rangle, \phi = \sum_n a_n \phi_n.$$

Because of

$$\bar{A} = \langle \psi, A\psi \rangle = \langle \sum_n a_n \phi_n, A(\sum_n a_n \phi_n) \rangle = \sum_n a_n^2 \langle \phi_n, A\phi_n \rangle = \sum_n a_n^2 \alpha_n \lambda_n \langle \phi_n, \phi_n \rangle = \sum_n a_n^2 \alpha_n \lambda_n$$

it follows

$$\bar{A} = \sum_n a_n^2 \alpha_n \lambda_n$$

i.e.

$$w_n = |a_n|^2 = |\langle \phi_n, \phi \rangle|^2.$$

In case the operator A is only hermitian (without being positive definite resp. A^{-1} is not compact), Hilbert, von Neumann and Dirac developed a corresponding spectral theory. It leads to a continuous spectrum $\lambda(v)$, indexed by a continuous v. In this case $\phi(x; v) = \phi_v(x)$ denotes an eigen-function to the eigen-value $\lambda(v)$. The norm of this function is infinite, i.e. the function is not an element of the Hilbert space. An approximation to this function with finite norm is given (for sufficiently small Δv) by the eigen-differential

$$\phi_{\Delta v}(x) = \frac{1}{\sqrt{\Delta v}} \phi(x; v)dv.$$

All for the Hilbert space related properties are valid for the eigen-differentials, but not for the eigen-function itself. The scalar product of the eigen-function is „normed“ to a Dirac δ-function by

$$\langle \phi(x; v'), \phi(x; v'') \rangle = \delta(v' - v'').$$

The norm of the related eigen-differentials is given by

$$\langle \phi_{\Delta v}(x), \phi_{\Delta v}(x') \rangle = \frac{1}{\Delta v} \int_{v'}^{v + \Delta v/2} d\mu \int_{v'}^{v + \Delta v/2} \phi(x; \mu') \phi(x; \mu'') d\mu'd\mu'' = \frac{1}{\Delta v} \int_{v'}^{v + \Delta v/2} \delta(\mu' - \mu'').$$

The integral is 1 for $v = v'$ (with appropriate norm factor) and is 0 if $|v - v'| > \Delta v$.

In case v is a momentum the eigen-differential gives a wave package with finite distance Δv in the momentum space and therefore with finite distance $\Delta x = \frac{1}{\Delta p}$ in the particle space. Such a package can be normed to the value 1 (1 particle). Δx (and correspondingly Δv) has to be larger than all other typical distances of the problem. In this sense eigen-differentials correspond to the formalism of wave package modelling.

The following eigenpair relations are valid:

$$A\phi_1 = \lambda_1 \phi_1, \quad A\phi_2 = \lambda_2 \phi_2, \quad \|\phi_2\|^2 = \infty, \quad \langle \phi_2, \phi_1 \rangle = \delta(\phi_2 - \phi_1).$$

The ϕ_n are not elements of the Hilbert space. The so-called eigen-differentials are built as superposition of such eigenfunctions.
The eigen-functions of the discrete and continuous spectrum build an extended Hilbert space to ensure that for every \(\psi \) it holds

\[
\psi(x) = \sum_n \alpha_n \psi_n + \int c(v')\psi(x;v')dv'.
\]

With

\[
c_n = \langle \psi_n(x), \psi(x) \rangle, \quad c(v) = \langle \psi(x;v), \psi(x) \rangle
\]

it holds the Parceval identity

\[
(\psi, \psi) = \sum_n |c_n|^2 + \int |c(v')|^2 dv',
\]

and the eigen-differential are orthogonal wave packages.

If for every \(L_2 \) function such a representation is possible, one call the system \(\{ \psi \} \) a complete orthogonal system.

Such a complete orthogonal system \(\{ \psi \} \) is not uniquely defined.

There is always the degree of freedom

- to choose arbitrarily the phase of each eigen-function
- the set of the non-standard eigenvalues can be orthogonalized on different ways
- to replace the index \(v \) of the continuous spectrum by an index \(\mu(v) \) with \(\mu(v) \) differentiable, monotone function of \(v \). Then

\[
\psi(x; \mu) = \frac{\psi(x; v)}{\sqrt{\mu'(x)dv}}
\]

For not all hermitian operators there exist a complete orthogonal system of eigen-functions. For all operators, which represent physical observables, there exist a complete orthogonal system.

The building of Hilbert scales is based on the Friedrichs extension of the domain of hermitian operators. Those domains can be extented to energetic Hilbert spaces (where the domain of the Hermitian operator is densely embedded into the energetic Hilbert space), that the symmetric operator is extented to a self-adjoint operator. The corresponding eigen-pairs of the constructed self-adjoint operator enable the definition of a Hilbert scale.

The not well defined wave package concept (only approximation solutions, divergent norms, the underlying wave functions themself do have no physical meaning, the regularity of the Dirac „function“ depends from the space dimension, index \(v \) of the continuous spectrum can be replaced by an index \(\mu(v) \) ...) is replaced by a quantum element Hilbert space \(H_{-1/2} = L_2 \otimes L|^\perp_2 = H_0 \otimes H^\perp_0 \) accompanied by a corresponding quantum energy Hilbert space \(H_{1/2} = H_1 \otimes H^\perp_1 \). Both Hilbert spaces are decomposed into classical Hilbert subspaces \(L_{-1/2} \) and \(H_1 \) (allowing „physical observables“ modelling) and related complementary subspaces, modelling not measurable physical relevant notions like quantum elements w/o density or ground state energy.

The quantum mechanics „energy density“ concept (basically the \(H_1 \)-norm of the potential function) is replaced by a sum given by

\[
\|x\|^2_{1/2} = \|x_0\|^2 + \|x_1\|^2_{1/2},
\]

whereby \(x \) denotes a quantum element \(x = x_0 + x_1 \in H_{-1/2} \) with its related quantum energy

\[
e = \sqrt{\|x_0\|^2 + \|x_1\|^2_{1/2}}.
\]

The prominent examples of Hermitian operators are the Laplace operator (to model the elastic energy of the string) and the single layer (singular Symm integral) potential operator’s to formulate the boundary integral equations of the homogeneous Dirichlet or Neumann boundary value problem.

The transport type and the Maxwell equations are also concerned with the gradient operator \(\nabla \), which is only skew symmetric. However, the properties of the Hilbert transform operator (e.g. skew symmetric, isometric, rotation invariant), and its related Riesz transform operators for space dimensions \(n \geq 2 \), enable an inner product definition (coming along with a corresponding „energetical“ domain extension) in case the derivative operator \(u \to u' \) is replaced by \(u \to (Hu)' \). In the above propose \(H_{-1/2} \)-based variational representation this goes along with a replacement in the form

\[
(u', v)_{-1/2} = (u', Sv)_0 \to ([Hu]', v)_{-1/2} = (Hu', v)_{-1/2} = (Hu, Sv)_0 = (Hsu', v)_0 = -(Hu, v)_0 = (u, v)',
\]

i.e. the modified differentiation operator \(u \to (Hu)' \) with domain \(H_0 \) defines an inner product (BrK), (BrK1), (BrK3).
The replacement \(u \to u' \) by \(u \to (Hu) \) is also proposed to define modified (Schrödinger) differential operators

\[
\frac{i\hbar}{2m} \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x} \right) \to \frac{i\hbar}{2m} \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x} \right) + \frac{1}{2m} \frac{\partial^2}{\partial x^2} \cdot H \left(\frac{\partial}{\partial x} \right).
\]

The energy-momentum relationship of a classical non-relativistic particle with mass \(m \) is given by \(E^2 = p^2 + m^2 \).

Substituting the (Schrödinger) differential operators \(i \frac{\hbar}{2m} \frac{\partial}{\partial t} - \frac{\partial}{\partial x} \) into this equation leads to the wave equation. Because of \(H^2 = -\frac{\hbar^2}{2m} \langle \frac{\partial^2}{\partial x^2} \rangle \), substituting the proposed modified (Schrödinger) differential operators into the equation \(E^2 = \frac{p^2}{2m} + U \) results into the wave equation in the form

\[
\left[\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} \right] \psi + U(\psi) = 0 .
\]

The energy-momentum relationship of a relativistic particle with mass \(m \) is given by \(E^2 = p^2 + m^2 \). The substitution of the (Schrödinger) differential operators \(i \frac{\hbar}{2m} \frac{\partial}{\partial t} - \frac{\partial}{\partial x} \) leads to the relativistic Klein-Gordon equation describing spin-0 particles in relativistic quantum field theory. However, the relativistic particle energy-momentum relationship allows positive and negative energy solutions \(E = \pm \sqrt{p^2 + m^2} \) resulting in negative probability densities \(\rho(x,t) = |\psi(x,t)|^2 \). This issue has been addressed by the Dirac equation, in which the time and space derivatives are first order. The Dirac equation can be thought of in terms of a "square root" of the Klein-Gordon equation. We emphasis, that the above energy-momentum relationship of a relativistic particle, given by \(E^2 = p^2 + m^2 \), is derived by applying the Legendre transform, which is only valid in the (corse-grained) \(H_{1/G} \) framework. In the proposed \(H_{1/2} \equiv H_{1/2}^f \) energy Hilbert space framework only the Hamiltonian formalism can be applied. The Hamiltonian and the Lagrange formalisms are only equivalent, if the Legendre transformation can be applied requiring certain regularity assumptions to the underlying domains.

Putting \(c = \frac{\hbar}{2m} \), the weak \(L_2 \)-based variational representation of the Schrödinger equation with potential energy \(U(\psi) = 0 \) is given by

\[
i(\dot{\psi}, \phi)_0 = \frac{c}{2} (-\Delta \psi, \phi)_0 = \frac{c}{2} (i\nabla \psi, -i\nabla \phi)_0 = - \frac{c}{2} (\nabla \psi, \nabla \phi)_0 = - \frac{c}{2} \langle \psi, \phi \rangle_1 \quad \forall \phi \in H_1,
\]

i.e. for \(\psi \in H_1 \) it holds \(\frac{d}{dt} \| \psi(t) \|^2_2 = - \frac{c}{2} \| \nabla \psi(t) \|^2_2 \).

Because of \(H^2 \psi = - \psi \), the corresponding weak \(H_{1/2} \)-based variational representation of the modified Schrödinger operator (in case of space dimension \(n = 1 \)) is given by

\[
i(\dot{\psi}, \phi)_{-1/2} = \frac{c}{2} (iH\psi', -i\phi')_{-1/2} = \frac{c}{2} (HS\psi', -i\phi')_0 = \frac{c}{2} (HS\psi', \phi')_0 = - \frac{c}{2} (iH\psi', \phi')_{-1/2} \quad \forall \phi \in H_{1/2},
\]

whereby \(S \) denotes the Symm integral operator. Putting \(\phi = \psi \in H_{1/2} \) it follows \(\frac{d}{dt} \| \psi(t) \|^2_{1/2} = \frac{c}{2} \| \nabla \psi(t) \|^2_{1/2} \), i.e. it holds \(\frac{d}{dt} \| \psi(t) \|^2_{1/2} = \frac{1}{2m} \frac{\hbar}{\pi} \| \psi(t) \|^2_{1/2} \) for \(\psi \in H_{1/2} \). The \(H_{1/0} \)-based weak definition of the commutator \([x, P] \psi(x) = \frac{\hbar}{2m} \psi(x) \) is given by

\[
([x, P] \psi(x), \phi)_0 = i \frac{\hbar}{2m} \langle \psi, \phi \rangle_0,
\]

i.e. it especially holds \(\langle (x, P) \psi(x), \phi \rangle_0 = i \frac{\hbar}{2m} \langle \psi, \phi \rangle_0 \).

As \(P^* \) is self-adjoint with respect to \(H_{1/2} \), the corresponding weak \(H_{1/2} \)-representation of the modified commutator \([x, P^*] \psi(x) = \frac{\hbar}{2m} [H, x] \psi(x) \) is given by

\[
(*) \quad ([x, P^*] \psi(x), \phi)_{-1/2} = \frac{\hbar}{2m} ([H, x] \psi(x), \phi)_{-1/2} = \frac{\hbar}{2m} ([H, x] S \psi(x), \phi)_0 = \frac{\hbar}{2m} ([H, x] H \psi(x), \phi)_0.
\]

For the commutator \([x, H] \theta \) \(\equiv \langle xH - Hx \rangle \) \(\theta \) it holds

\[
[x, H] \theta (x) = \frac{1}{2} \int_0^\infty \theta(y) dy .
\]

A vanishing constant Fourier term of a function \(\theta \in L_2 \) is a sufficient criterion that \(\theta \in L_2 \) is a wavelet. At the same time, the Hilbert transform of every function has a vanishing constant Fourier term. In other words, \(H \psi \) in \((*) \) above is a wavelet function with vanishing constant Fourier term. It therefore follows that the modified commutator vanishes, i.e.

\[
[x, P^*] \psi(x) = 0 \quad \text{in a weak } H_{1/2} \text{-sense.}
\]

The equation indicates related properties of the correspondingly modified creation resp. annihilation operators \(\hat{a}, \hat{a}^* \), accompanied by the related Hamiltonian function \(H = \hat{a}^* \hat{a} + \frac{c}{2} \) and the commutator operator property \([\hat{a} \hat{a}^*] = \hat{a} \hat{a}^* + \hat{a}^* \hat{a} - 1 = 1 \).
The concept of Hilbert scales \(H_{\alpha} \), \(\alpha \in \mathbb{R} \), is built on the appropriate hermitian operator properties. The polynomial norms \(\|x\|_{\alpha}^2 \) are governed by an exponential \(\|x\|_{\alpha}^2 \)-norm, \((\text{NJ}), (\text{NJ1})\). The approximation "quality" of the specific proposed \(H_{1/2} \)-quantum element Hilbert space with respect to the "observable space" norm of \(H_0 \) is governed by the inequality

\[
\|x\|_{1/2}^2 \leq \delta \|x\|_g^2 + \epsilon t/\delta \|x\|_{1/2}^2 , \text{ e.g. } \|x\|_{1/2}^2 \leq t \|x\|_0^2 + \sum_{i=1}^n e^{1/2} x_i^2 .
\]

The proposed \(H_{1/2} \)-quantum energy Hilbert space overcomes the current challenges of a mathematically not well defined ground state energy model, which are accompanied by the miss-understanding that the ground state energy is fixed and uniquely defined.

The Friedrichs extension (canonical self-adjoint extension of a non-negative densely defined symmetric operator) can be applied to extend potential operators with domains \(D(A) \) (a subspace of a Hilbert space \(H \)) to self-adjoint operators with an extended domain \(D(\hat{A}) \), and \(R(\hat{A}) = \mathbb{H} \). Therefore they enable a decomposition into an orthogonal sum of two subspaces \(H_1 \ominus H_2 \) of \(D(\hat{A}) \). Regarding non-linear problems we mention, that for a vector space \(H \), the empty set, the space \(H \) itself, and any linear subspace of \(H \) are convex cones.

A decomposition of a Hilbert space \(H \) into an orthogonal sum of two spaces \(H^1 \) and \(H^2 \) with corresponding projection operators \(P^1 \) and \(P^2 \) enables a definition of a "potential" and a related "potential operator":

for \(x \) being an element of \(H \) its "potential" is about an indefinite metric given by \((\text{VaM})\) (11.1)

\[
\varphi(x) := \left(\left(x \right) \right)^2 = \|P^1 x\|^2 - \|P^2 x\|^2
\]

with a related potential operator \(W(x) \) in the form \((\text{VaM})\) (11.4)

\[
W(x) := \frac{1}{6} \text{grad}(\varphi(x)) = P^1(x) - P^2(x).
\]

The potential criterion \(\varphi(x) = c > 0 \) defines a manifold, which represents a hyperboloid in the Hilbert space \(H \) with corresponding hyperbolic and conical regions.

The theory of Hilbert spaces with an indefinite metric is provided in e.g. (DrM), (AzT), (DrM), (VaM). Following the investigations of Pontrjagin and Iohvidov on linear operators in a Hilbert space with an indefinite inner product, M. G. Krein proved the Pontrjagin-Iohvidov-Krein theorem (FaK). The tool set for an appropriate generalization of the above "grad" definition in case of non-linear problems is about the (homogeneous, not always linear in \(h \)) Gateaux (weak) differential \(\mathbf{V} \mathbf{F}(x,h) \) of a functional \(\mathbf{F} \) at a point \(x \) in the direction \(h \) \((\text{VaM})\) §3).

If there exists an operator \(A \) with \(D(A) = H_1 \), \(R(A) = H_0 \) and \(\|x\|_1 = \|Ax\|_0 \), whereby the operator \(A \) is positive definite, self-adjoint and \(A^{-1} \) is compact, the corresponding eigenvalue problem \(A\phi_i = \sigma_i \phi_i \) has infinite solutions \(\{\phi_i: f_i \} \) with \(\sigma_i \to \infty \) and \(\langle \phi_i, \phi_i \rangle = \delta_{i,j} \). For each element \(x \in H_1 = A^{-1} H_0 \) it holds the representation

\[
x = \sum_{i=1}^\infty \langle x, \phi_i \rangle \phi_i .
\]

Inner products with corresponding norms of a distributional Hilbert scale can be defined based on the eigenpairs of an appropriately defined operator in the form

\[
\langle x, y \rangle := \sum_{i=1}^\infty \lambda_i^\alpha \langle x, \phi_i \rangle \langle y, \phi_i \rangle = \sum_{i=1}^\infty \lambda_i^\alpha y_i x_i .
\]

Additionally, for \(t > 0 \) there can be an inner product resp. norm defined for an additional governing Hilbert space with an "exponential decay" behavior in the form \(e^{-x/\lambda} \) given by

\[
\langle x, y \rangle_{\alpha}^2 := \sum_{i=1}^\infty e^{-\lambda_i x_i y_i} \langle x, \phi_i \rangle \langle y, \phi_i \rangle , \text{ } \|x\|_{\alpha}^2 := \langle x, x \rangle_{\alpha}^2 .
\]

It enables an approximation theory for (distributional) Hilbert scales \(H_{\alpha} \), \(\alpha > 0 \), \((\text{NJ}), (\text{NJ1}), (*)\). The essential applied estimate is given by

\[
\|x\|_{\alpha}^2 \leq \delta 2^\alpha \|x\|_{\alpha}^2 + \epsilon t/\delta \|x\|_{\alpha}^2 ,
\]

which follows from the inequality \(\lambda_{\alpha} \leq \delta 2^\alpha + \epsilon t/\delta \), being valid for any \(t, \delta, \alpha > 0 \) and \(\lambda \geq 1 \). The special choices \(\alpha = 1/2, \rho = 0 \) lead to the above \(H_{1/2} \)-related inequality.

We note the similarity of the above inner product \(\langle x, y \rangle_{\alpha}^2 \) to general solution of the Schrödinger equation given by

\[
\overline{\phi(x,t)} = \sum_\alpha \phi(x,t) \overline{\phi_\alpha(x)} ,
\]

\((*) \) Theorem: Let \(a < b < y \). Then to \(t > 0 \) and \(x \in H_0 \) there is an approximation \(y \in H_1 \) according to \(\|x - y\|_0 \leq t^{\alpha/\beta} \|x\|_0 \), \(\|x - y\|_\beta \leq t^{\alpha/\beta} \|x\|_\beta \), and \(\|x\|_\beta \leq t^{\alpha/\beta} \|x\|_\beta \).
Regarding the above Hilbert space decompositions there is an analogy to Robinson’s hyper-real (ideal) numbers \(\sim r = r + i \), which can be decomposed into real numbers \(r \) and infinitesimal numbers \(i \). Robinson’s Non-Standard-Analysis “marks a new stage of development in several famous and ancient paradoxes about infinitely small and large numbers”, started with Euclid (who deliberately excluded both, the infinite and the infinitesimal), until Weierstrass’ “\(\epsilon \) limit” concept, building the foundation of current Standard Analysis (*).

The extended field of hyper-real numbers is still an ordered field, but the additional infinitesimal numbers violate the Archimedean axiom. Roughly speaking, the Archimedean axiom is the property of having no infinitely larger or infinitely smaller elements. This axiom can be physically interpreted, as the capability to surpass any distance between zero and a real number \(y > x \) by \(nx > y \). In simple words, a distance measure is possible.

(DaP) Nonstandard Analysis, pp 237 ff:

„Robinson revived the notion of the „infinitesimal“, a number that is infinitesimal small yet greater than zero... In the nineteenth century infinitesimals were driven out of mathematics once and for all, or so it seemed. To meet the demands of logic the infinitesimal calculus of I. Newton and G. W. Leibniz was reformulated by K. Weierstrass without infinitesimals. Yet today it is mathematical logic, in its contemporary sophistication and power, that has revived the infinitesimals and made it acceptable again. ... In Euclid both the infinite and the infinitesimal are deliberately excluded. We read in Euclid that a point is that has a position but no magnitude. ... The atomism of Demokrit had been meant to refer not only to matter but also to time and space. But then the arguments of Zenon had made untenable the notion of time as a row of successive instants, of the line as a row of successive „indivisibles“. Aristotle, the founder of systematic logic, banished the infinitely large or small from geometry. ...

The full flower of infinitesimal reasoning came with the generation after Pascal: Newton, Leibniz, the Bernoulli brothers and I. Euler. The fundamental theorems of the calculus were found by Newton and Leibniz in the 1660s and 1670s. The first textbook on the calculus was written by L’Hospital, ... Here it is state as the outset as an axiom that two quantities differing by an infinitesimal can be considered to be equal. In other words, the quantities are at the same time considered to be equal to each other and not equal to each other! A second axiom states a curve is „the totality of an infinity of straight segments, each infinitesimal small.“ ...

Leibniz did not claim that infinitesimals really existed, only that one could reason without error as if they did exist. ... Newton century to avoid the infinitesimal.

... Dynamics had become as important as geometry in providing questions for mathematical analysis. The leading problem was the connection between „fluents“ and „fluxions,“ what would today be called the instantaneous position and the instantaneous velocity of a moving body: ...

... We let \(dt \) stand for the infinitesimal increment of time and \(ds \) for the corresponding increment of distance. ... thus the ratio \(\frac{ds}{dt} \) which is the quantity we are trying to find, is equal to \(32 + 16dt \). ... Since the answer should be a finite quantity, we should like to drop the infinitesimal term \(16dt \), and get the answer, 32 feet per second, for the instantaneous velocity.

... Berkeley declared that the Leibniz product, simply „considering“ \(32 + 16dt \) to be „the same“ as \(32 \), was unintelligible. „Nor will is avail,“ he wrote, „to say that (the term neglected) is a quantity exceedingly small, since we are told, that if something neglected, to matter how small, we can no longer claim to have exact velocity but only in approximation. ...

... To find an instantaneous velocity according to the Weierstrass method we abandon any attempt to compute the speed as a ratio. Instead we define speed as a limit, which approximated the ration of finite increments. ... The approach succeeded, We do however, pay a price. The intuitively clear and physically measurable quantity, the instantaneous velocity, becomes subject to the surprisingly subtle notion of „limit“.

... The reconstruction of the calculus on the basis of the limit concept and its epsilon-delta definition amounted to a reduction of the calculus to the arithmetic of real numbers. ... Leibniz had thought of infinitesimals as being infinitely small positive or negative numbers that still had „the same properties“ as the ordinary numbers of mathematics. On its face the idea seems self-contradictory. It was by using a formal language that Robinson was able to resolve the paradoxon. Robinson showed how to construct a system containing infinitesimals that was identical with the system of „real“ numbers with respect to all those properties expressible in a certain language“.
The Einstein field equations are classical non-linear, hyperbolic PDEs defined on differentiable manifolds coming along with the concepts of „affine connexion“ and „external product“. The Standard Model of Elementary Particles (SMEP) is basically about a sum of three Langragian equations, one equation, each for the considered three „Nature forces“. Quantum mechanics is basically about matter fields described in a $L^2 = H_0$ Hilbert space framework modelling quantum „states“ (position and momentum).

Our proposed quantum gravity model is based on a distributional Hilbert scale framework (avoiding the Dirac „function“ concept to model a „point“ charge, modelled as element of the distributional Hilbert space $H_{-n/2}$). Certainly, a Hilbert space based quantum gravity requires some goodbyes from current postulates of both theories, the Hilbert space based quantum theory and the metric space based gravitation theory.

The central changes to current quantum theory and gravity theory are:
- as the L^2 Hilbert space is reflexive, the current operator quantum mechanics/dynamics equations can be equivalently represented as variational equations with respect to the L^2 inner product; those variational representations are extended to a newly proposed quantum element Hilbert space $H_{1/2}$, we note that the regularity of the Dirac function, as an element of the distributional Hilbert space $H_{-n/2}$, is (in case of space dimension $n = 1$) at most an element of $H_{1/2}$. In this context, we emphasize, that the main gap of Dirac’s related quantum theory of radiation is the small term representing the coupling energy of the atom and the radiation field. Our proposed model omits this additional „coupling“ term.

- current classical Partial Differential Equations (PDE) can be also equivalently represented as variational equations with respect to the L^2 inner product; also those variational representations are extended to a newly proposed quantum element Hilbert space $H_{1/2}$. This extension is accompanied with reduced regularity requirements to the underlying domain oft he considered PDE. We note that the Einstein field equations and the wave equation are hyperbolic PDEs and that PDEs are only well defined in combination with appropriate initial and boundary value functions, a part of a properly defined domain. From a physical modelling perspective, we note, that the main gap of the Einstein field equations is, that it does not fulfill Leibniz’s requirement, that “there is no space, where no matter exists”. The GRT field equations (usually also not with properly defined domain) provide also solutions for a vaccuum, i.e. the concept of “space-time” does not vanishes in a matter-free universe.

The Friedrichs extension of the classical Laplace operator in a L^2 Hilbert space framework defines the inner product of a related „energy“ Hilbert space H_1. The extended Laplace operator in the newly proposed $H_{1/2}$ framework leads to an extended energy Hilbert space $H_{1/2}$. The new energy Hilbert space $H_{1/2}$ is decomposed into the current ”kinematical“ energy Hilbert space H_1 (with its corresponding underlying (fermion elements) Hilbert space $H_{1/2}$ and its complementary ”ground state“ energy Hilbert space H^{\perp}_1 (with its corresponding underlying (boson elements) Hilbert space $H^{\perp}_{1/2}$), i.e. $H_{1/2} = H_1 \otimes H^{\perp}_1$. The kinematical Hilbert space H_1 can be further decomposed into repulsive and attractive kinematical energy spaces, in alignment with a corresponding underlying decomposition of the (fermion elements) Hilbert space H_0 into repulsive and attractive fermion element spaces.

Mathematically speaking, the decomposition $H_{1/2} = H_1 \otimes H^{\perp}_1$ is about a ”coarse grained“ Hilbert space H_1 (i.e. it is compactly and densely (with respect to the H_1 norm) embedded into $H_{1/2}$) and its complementary closed (in the sense of Cantor’s cardinality measure, very much larger) subspace H^{\perp}_1 of $H_{1/2}$. In the sense of Cantor, the decomposition corresponds to the ”decomposition“ of the field of real numbers \mathbb{R} into rational (countable) numbers \mathbb{Q} and irrational (non countable) numbers. We also mention that ”distributions“ are also called ”ideal functions“, (CoR) p. 766: the name ”distributions“ indicates that ideal functions, such that the Dirac delta function and its derivatives, may be interpreted by mass distributions, dipole distributions, etc., concentrated in points, or along lines or on surfaces, etc.
The considered Hilbert scale is based on appropriately defined eigen-pair solutions of a problem adequate linear operator A with the properties (1) A selfadjoint, positive definite, (2) A^{-1} compact. The corresponding polynomial decay norms are enriched by an "exponential decay" inner product resp. norm with parameter $t > 0$, given by (BrK5)
\[
(x, y)_{\lambda(t)} = \sum_k \sigma_k^2 e^{-\sqrt{\lambda} t} (x, \varphi_k)(y, \varphi_k) , \quad \|x\|^2_{\lambda(t)} := (x, x)_{\lambda(t)}.
\]
An element $x = x_0 + x^1_1 \in H_{-1/2} = H_0 + H_{1/2}^1$ with $\|x_0\|_0 = 1$ is governed by the norm of its (observation) subspace H_0 and the norm $\theta := \|x_0\|^2_1/2$ by, (BrK3), (BrK5),
\[
\|x\|^2_{-1/2} \leq \theta \|x\|^2_0 + \sum_{k=1}^\infty e^{1-\sqrt{\lambda} \theta} x_k^2.
\]
This norm estimate is a special case of the general inequality ($\beta > 0$ be fixed)
\[
\|x\|^2_{\alpha-\beta} \leq \delta^{2\beta} \|x\|^2_0 + e^{\beta/\delta} \|x\|^2_{\alpha(t)}.
\]
The proposed quantum gravity model is based on a Hilbert space framework. Wavelet analysis can be used as a mathematical microscope, looking at the details that are added if one goes from a scale "a" to a scale "a + da", where "da" is infinitesimally small. We mention that an alternative model for an "a" to a scale "a + da" model is the concept of the ordered field of ideal points, an extension to the ordered field of real numbers with same cardinality, but having additionally infinitesimal elements (also called non-Archimedean numbers).

The mathematical microscope wavelet tool 'unfolds' a function over the one-dimensional space \mathbb{R} into a function over the two-dimensional half-plane of "positions" and "details". This two-dimensional parameter space may also be called the position-scale half-plane. The wavelet duality relationship provides an additional degree of freedom to apply wavelet analysis with appropriately (problem specific) defined wavelets in a (distributional) Hilbert scale framework where the "microscope observations" of two wavelet (optics) functions f and g can be compared with each other by the "reproducing" ("duality") formula.

Physically speaking, the "coarse grained" (kinematical hyperbolic space-time, matter, action, Shannon entropy governed world) Hilbert space pair (H_0, H_1), which is compactly and densely embedded into the (quantum element / quantum energy) Hilbert space pair $(H_{-1/2}, H_{1/2})$, and its complementary closed (ground "state" elliptic world) sub-space pair $(H_0^1, H_{1/2}^1)$ of $(H_{-1/2}, H_{1/2})$ allows to revisit the Hawking–Hartle interpretation of their "wave function of the universe" interpretation concerning a required physical initial state and a corresponding mathematically required measure on an initial state (DrW).

We note that the Fourier analysis based applied spectral analysis methods (e.g. cosmological distance measurement or the Doppler effect in combination with the Hubble diagram leading to the interpretations of moving apart galaxies from each other galaxies with superluminal velocity in an expanding universe) is only defined in the "coarse-grained" kinematical Hilbert space framework H_1, i.e. the proposed quantum gravity model allows an re-interpretation of the observed cosmological background radiation phenomenon (*)

(*) At the same point in time H. Weyl's requirement concerning a truly infinitesimal geometry ((WeH) p. 30), are fulfilled as well, because ...

... a truly infinitesimal geometry (wahhafte Nahegeometrie) ... should know a transfer principle for length measurements between infinitely close points only ... (WeH*)

The physical principle for the proposed kinematical Hilbert space H_1 is the (original) "Leibniz least action" principle, which is based on the "Leibniz action element" $w \cdot dt$ resp. $m \cdot v \cdot ds$ defined for any arbitrary system of arbitrary matter particles being subject to arbitrary forces. Leibniz's "action" is defined as the action of the movement of a single matter particle during a certain time period. The least action principle in combination with Euler's variational calculus enabled multiple ODE or PDE models of physical laws, (KnA).
The good bye to current physical classical PDE model solutions is that those PDE are considered as approximation solutions to the underlying weak ($H_{-1/2}$-based) variational representations and not the other way around. The current Lagrange equations are only valid in the classical sense, whereby the weak variational models are governed by a common Hamiltonian ($H_{1/2}$-based) formalism.

Physically speaking, the currently modeled "forces" phenomena keep part of the specific corresponding classical PDE model, but are governed by the same (kinematical and ground state) energy field. In other words, there is only one single common kinetical and dynamical energy governing the several classical PDE physical (Lagrange formalism based) models; physically speaking, the current 3 Nature forces are model specific phenomena, based on "elementary particle interactions", governed by a single common kinetical and dynamical energy model; all Lagrange formalism models (and its combinations) can be derived from a single common underlying (energy based) Hamiltonian formalism, where the physical model specific (force based) Lagrange formalism is only valid with additional regularity requirements to ensure the existence of the classical PDE solutions. In other words, the different (force based) Lagrange formalisms (and its related transformation groups combinations) provide only approximation models of the considered special physical situations to the underlying single quantum element & quantum energy "world".

The key ingredients of the proposed quantum gravity theory to integrate the Einstein field equations is about differential forms equipped with the inner product of the correspondingly defined distributional Hilbert space, with direct relationship to the Hilbert space $H_{1/2}$ and the mathematical concept of indefinite inner product spaces.

An immediate consequence of the extended energy Hilbert space concept is the solution of the 3D-NSE and Yang-Mills mass problems. The correspondingly extended Cauchy problems of the NSE and Maxwell equations become long term stable and well-posed, while the extended Maxwell equations also allows standing (stationary) waves, i.e. the Yang-Mills equations (coming along with the physical mass gap problem) are no longer required:

- regarding the 3D NSE problem the newly proposed "fluid element" Hilbert space $H_{-1/2}$ with corresponding extended energy ("momentum", "velocity") space $H_{1/2}$ leads to Ricci ODE estimates of order 1/2 enabling a corresponding bounded Sobolevskii (energy inequality) estimate. Regarding the second unknown term of the NSE, the pressure, we note that "pressure" corresponds to "energy density", $\frac{\text{Volume}}{\text{Area}}$.

- the variational representation of the Maxwell equations in the proposed quantum element/energy Hilbert space framework ($H_{-1/2}, H_{1/2}$) conserves the two H_1-based progressive (1 – parameter (space or time variable)) electric and magnetic waves concept while also allowing additional standing (stationary) H_1^\perp-based (2 – parameter) wavelets. The vacuum solution of the first ones conserves the linkage to the classical wave equations for the electric and magnetic field (while this transformation still requires additional, physical not relevant regularity requirements to the underlying solution), while the second ones provides additional information regarding the elementary particle dynamics.

With respect to "The large scale structure of space-time" and the role of gravity (Hawking S. W., Ellis G. F. R., Cambridge University Press, 1973) and the positive answer regarding "the global nonlinear stability of the Minkowski space" (ChD1) we note that the notions "matter, space-time, action, .." etc. are only defined in the H_1 energy Hilbert space with its underlying Minkowski space governed by hyperbolic PDEs, while the orthogonal Hilbert space H_1^\perp is governed by elliptic PDEs only. The (nonlinear) stability of the Minkowski space framework requires initial data sets with finite energy and linear and angular momentum (ChD1).

From (CoR) p. 763, we recall the following conjecture for the wave equation, which would show that the four-dimensional physical space-time world of classical physics enjoys an essential distinction: "families of spherical waves for arbitrary time-like lines exist only in case of two and four variables, and then only if the differential equation is equivalent to the wave equation (which includes also the radiation problem)."
The proposed model is only about truly bosons w/o mass, modelled as elements of the \mathcal{H}_1-complementary sub-space of the overall energy Hilbert space $\mathcal{H}_{1/2}$. Therefore, the main gap of Dirac's quantum theory of radiation, i.e. the small term representing the coupling energy of the atom and the radiation field, becomes part of the \mathcal{H}_1-complementary (truly bosons) sub-space $\mathcal{H}_1^⊥$ of the overall energy Hilbert space $\mathcal{H}_{1/2}$. It allows to revisit Einstein’s thoughts on

ETHER AND THE THEORY OF RELATIVITY

An Address delivered on May 5th, 1920, in the University of Leyden

in the context of the space-time theory and the kinematics of the special theory of relativity modelled on the Maxwell-Lorentz theory of the electromagnetic field.

Einstein’s field equations are hyperbolic and allow so called „time bomb solutions“ which spreads along bi-characteristic or characteristic hyper surfaces. Actual quantum theories are talking about „inflations“, which blew up the germ of the universe in the very first state. The inflation field due to these concepts are not smooth, but containing fluctuation quanta. The action of those fluctuations create traces into a large area of space. The existence of quantum fluctuations (in a „world“ without a time arrow and without entropy) has been verified by the Casimir and the Lamb shift effects.

The standard „big bang“ theory assumes that the creation of the first mass particle (fermion) was the „birthday“ of the universe. This event was caused by an „inflation“ energy field triggered by a „disturbance“, called fluctuations, which needs to be valid before the gravity theory can „happen“.

In the proposed quantum gravity model the „birthday“ of the „coarse-grained“, compactly embedded fermion-energy Hilbert (sub-) space \mathcal{H}_1 of $\mathcal{H}_{1/2}$ (coming along with the (kinematical) notions ”space“, ”time“, ”action“, etc.) is interpreted as first disturbance of the purely (pre-universe) boson energy field $\mathcal{H}_1^⊥$ with not existing entropy. The latter one can be interpreted as the (in sync with the Casimir effect) not empty quantum vacuum; its oscillation is the cosmic background radiation, which contains all features of dynamic energies.

With the „birthday“ of fermions the correspondingly adapted variational representation of the wave equation is then governed by the purely kinematical (fermions) energy Hilbert space \mathcal{H}_1, while its underlying initial values are purely (undisturbed) vacuum (CBR, bosons) energy data from $\mathcal{H}_{1/2}$. As a consequence, the wave equation becomes time-asymmetric and the second law of (kinematical) thermodynamics (the entropy phenomenon coming along with the notions „mass“, „time“, „space“ etc.) can be interpreted (and derived from this wave equation) as „action“ principle of the ground state energy to damp and finally eliminate (remedy the deficiency) of any kinematical energy „disturbance“.

(CoR) p. 763: "Little is known about the scope of the concept of relatively undisturbed spherical waves relating spherical waves to the problem of transmitting with perfect fidelity signals in all directions. All we can do here is to formulate a conjecture ... some support ...: - families of spherical waves for arbitrary time-like lines exist only in case of two or four dimensions if and only if the underlying differential equation is the wave equation ..." (which includes the radiation problem, (CoR) p. 695). A proof of this conjecture would provide (additional) evidence of the below proposed integrated SMEP & gravity theory.

In the context with some relevance of the considered Kummer functions to plasma physics we refer to (KoV), (PaY):

- regarding the linear response of magnetized Bose plasmas at $T = 0$ for large and small values of its parameter; the large parameter expansion plays a determining role in the behaviour of these Bose systems in the limit that the external magnetic field B approaches zero. This particular expansion is generalized for the Hurwitz zeta function, (KoV).

- regarding the linearized collision operator in the Boltzmann equation with repulsive intermolecular (inverse-power) potentials $V(r) = a \cdot r^{-\alpha}$ for $\alpha > 2$; the collision operator has a purely discrete spectrum and its eigenfunctions are infinitely differentiable L_2-functions which are complete in L_2. The proof relies on the formalism of pseudo-differential operators; the special case $\alpha = 2$ is about the Maxwell's molecules, (PaY).
In the context with the building of distributional Hilbert scales based on a linear operator with discrete spectrum and eigenfunctions, which are complete in L_2, is underlying approximation theory, and an „exponential decay“ inner product resp. norm with parameter $t > 0$, given by

$$(x,y)_{a,(t)} = \sum_k \sigma_k e^{-\sqrt{\sigma_k} t}(x,\varphi_k)(y,\varphi_k), \quad \|x\|_{a,(t)}^2 := (x,x)_{a,(t)}$$

governing all „polynomial decay“ Hilbert scale norms we refer to (Nij), (Nij1).

In the context with some relevance of the considered Kummer functions to the Navier-Stokes equation we refer to (PR1) regarding an integral representation of the Navier-Stokes equations for an incompressible viscous fluid. „Making use of standard integral transform methods and considering the longitudinal components of the velocity field, thereby eliminating the pressure field, the Navier-Stokes equations are cast in integral form. The intrinsically non linear character of the equations has proved to be an unsurmountable difficulty that has severely restricted their practical use. The limited understanding of the turbulent motion of fluids and the lack of a comprehensive theory of turbulence is a consequence of this mathematical complication. ... The final result is a non linear integral equation for the velocity field alone, involving a single convolution over the space and time variables.”

The convolution kernel of the integral representation of the Navier-Stokes equations is built on the functions

$$l_0(\vec{r},t) := \frac{1}{(4\pi \nu t)^{3/2}} e^{-\frac{|\vec{r}|^2}{4\nu t}}, \quad l_1(\vec{r},t) := \frac{1}{(4\pi \nu t)^{3/2}} I_1 \left(\frac{1}{2}, \frac{3}{2}, -\frac{|\vec{r}|^2}{4\nu t}\right).$$

Regarding the non-linear, non-stationary Navier-Stokes equations a change from a H_0 based weak variational framework to a $H_{-1/2}$ based framework leads to reduced regularity assumptions to the initial and boundary value functions, the NSE problem becomes well posed, while at the same time the Serrin gap problem disappears.

From a physical modelling perspective the extended $H_{1/2}$ norm based energy measure of the non-linear term does not vanishes, in opposite to the current H_1 energy norm; at the same point in time the potential incompatibility of the initial boundary values of the NSE with the Neumann problem based prescription of the pressure at the bounding walls disappears.

One can seek the harmonic function solution of the Neumann boundary value problem

$$\Delta u = 0 \quad \text{in } R^3 - S$$
$$\frac{\partial u}{\partial n} = f \quad \text{on } S$$

for a closed connected surface $S \subset R^3$ in the form $u(x) = \frac{1}{4\pi} \int_{S} v(y) \frac{\cos \phi_{xy}}{|x-y|^2} dS_y$, where ϕ_{xy} denote the angle between the vector $|x - y|$ and the normal n_y to the surface at the point y and $v(y)$ is the density of the double layer potential.

The unknown function $v(y)$ is obtained by the equation

$$((\Pi v)(x) := \frac{1}{4\pi} \int_{S} v(y) \frac{\cos \phi_{xy}}{|x-y|^2} dS_y = f(x).$$

The operator Π is called the Prandtl operator.

With respect to the considered newly proposed energy Hilbert space $H_{1/2}$ we note the following (Lia),

Theorem: The Prandtl operator $\Pi : H_{1/2} \to H_{-1/2}$ is bounded, the function

$$u(x) := \frac{1}{4\pi} \int_{S} v(y) \frac{\cos \phi_{xy}}{|x-y|^2} dS_y$$

is an element of $H_1(R^3 - S)$ and the exterior Neumann problem admits one and only on generalized solution.
The above theorem summarizes the following properties, (LiI) (4.1.40), proposition 4.2.1, Theorem 4.2.2, proposition 4.3.1:

i) the Prandtl operator \(\mathcal{P} : H_r \to H_{r-1} \) is bounded for \(0 \leq r \leq 1 \)

ii) there is a representation \(\mathcal{P} = A + K \) with

\[
(Av)(x) = \frac{1}{4\pi} \oint_{\mathcal{S}} \frac{v(y)}{|x-y|^2} dS_y \quad \text{and} \quad (Kv)(x) = \frac{1}{4\pi} \oint_{\mathcal{S}} k(x,y)v(y) dS_y
\]

whereby

\[
|k(x,y)dS_y| \leq \left| \frac{|x-y|^2(\hat{n}_x\hat{n}_y-1)}{|x-y|^3} \right| \leq \frac{c}{|x-y|},
\]

iii) For \(0 < r < 1 \) the Prandtl operator is Noetherian, i.e. it has a right regularizer \(R \) with \(R\mathcal{P} = RL + RN \), whereby \(RN \) is a compact operator in \(H_r \), \(R \) is bounded from \(H_{r-1} \) to \(H_r \) and the operator \(N \) is bounded from \(H_r \) to \(H_0 \). The operators \(NR \) and \(LR \) are a compact operators in \(H_r \).

iv) For \(v \in H_r, r \geq 1/2 \), the function

\[
u(x) = \frac{1}{4\pi} \oint_{\mathcal{S}} v(y) \frac{\cos \phi_{xy}}{|x-y|^2} dS_y
\]

is an element of \(H_1(R^3 - S) \).

v) For \(1/2 \leq r < 1 \) the exterior Neumann problem admits one and only on generalized solution.
Plasma physics as a „proof of concept“ of the proposed Hilbert space based quantum gravity model

Plasma is an ionized gas consisting of approximately equal numbers of positively charged ions and negatively charged electrons. One of the key differentiator to neutral gas is the fact that its electrically charged particles are strongly influenced by electric and magnetic fields, while neutral gas is not. There are two nonlinear equations that have been treated extensively in connection with nonlinear plasma waves: the Korteweg-de Vries equation and the nonlinear Schrödinger equation.

"When an electron plasma wave goes nonlinear, the dominant new effect is that the ponderomotive force of the plasma waves causes the background plasma to move away, causing a local depression in density called caviton. Plasma waves trapped in this cavity then form an isolated structure called envelope soliton or envelope solitary wave. Considering the difference in both the physical model and the mathematical form of the governing equations, it is surprising that solitons and envelopes solitons have almost the same shape", (ChF) 8.8.

(MiK) : „Charge Neutrality is one of the fundamental property of plasma: it is about the shielding of the electric potential applied to the plasma. When a probe is inserted into a plasma and positive (negative) potential is applied, the probe attracts (repels) electrons and the plasma tends to shield the electric disturbance.

Landau damping is the other fundamental process of plasma: it is about collective phenomena of charged particles. Waves are associated with coherent motions of charged particles. When the phase velocity of wave or perturbation is much larger than the thermal velocity of charged particles, the wave propagates through the plasma media without damping or amplification. However when the refractive index \(n \) of plasma media becomes large and plasma becomes hot, the phase velocity \(c/N \) (c is light velocity) of the wave and the thermal velocity become comparable (\(c/N \sim vT \)), then the exchange of energy between the wave and the thermal energy of plasma is possible. The existence of a damping mechanism of wave was found by L. D. Landau. The process of Landau damping involves a direct wave-particle interaction in collisionless plasma without necessity of randomizing collision. This process is fundamental mechanism in wave heatings of plasma (wave damping) and instabilities (inverse damping of perturbations).

Plasma physics modelling is basically about statistical evolution of a large number of particles interacting through „collisions“. The mathematical models are the Boltzmann and Landau equations, where the unknown function \(f \) corresponds at each time \(t \) to the density of particles at the point \(x \) with velocity \(v \). (LiP): „If the related non-local, quadratic operator \(\partial(f,f) \) were zero, the kinetic Boltzmann and Landau equations would simply mean that the particles do not interact an the density \(f \) would be constant along particle paths“. The operator \(\partial(f,f) \) was introduced by Maxwell and Boltzmann for the case, that collisions occur.

"In case the described particles of the Boltzmann equation interact with a two-body force (collisions case), this leads to a Vlasov-like force (or self-consistent force, or mean field...) \(F^* \), (LiP). Its underlying potential function \(V(x) \) is governed by the Laplace operator \(\Delta = \nabla \nabla \) based potential equation, given by \(-\Delta = \nabla \nabla f \). In (NJ*) corresponding unusual (Sobolev and Hölder) norm estimates are provided, enjoying appreciated shift theorems for the Landau damping phenomenon critical Coulomb potential case; the shift theorems also well fit to the proposed \(H_{1/2} \) Hilbert space framework. The provided proofs are all based on standard estimates for the Newtonian potential.

In case the Boltzmann collision kernel \(B \) of the non-local, quadratic operator \(\partial(f(f,(x,v),f(x,v))) \) presents singularities of an arbitrarily high order, it is about so-called grazing collisions, (LiP): when almost all collisions are grazing this leads to Landau collision operator resp. the Landau equation (also called the Fokker-Landau equation).

The microscopic kinetic description of plasma fluids leads to a continuity equation of a system of (plasma) "particles" in a phase space \((x,v) \). In case of a Lorentz force the equation reduces to the so-called collisions-less (kinetic) Vlasov equation (ShF) (28.1.2)), where the force \(F \) of the baseline Boltzmann equation, acting on the particles, is entirely electromagnetic (ChF) 7.2. Physically speaking, collisions are neglected in case of sufficiently hot plasma, i.e. in case of sufficiently high plasma energy.

We note that the related Vlasov formula for the plasma dielectric for the longitudinal oscillators

\[
\mathcal{W}(\frac{\omega}{c}) = -\int_{-\infty}^{\infty} \frac{F_0(\omega,v)dv}{\frac{\omega}{c} - v},
\]

is not well defined, from a mathematical and from a physical point of view. Mathematically speaking, it is not well defined, even (as Vlasov suggested) if the integral is interpreted as a principle-value integral, (ShF) p. 93. Physically speaking, the integral is divergent in case of the
important physical phenomenon of electrons travelling with exactly the same material speed \(\frac{v}{c} \) and the wave speed \(v \). The underlying „erroneous assumption is, that longitudinal oscillations set up initially in a plasma with nonpathological electron distribution function should be able to persist forever in the absence of dissipative collisions. In other words, it should be possible to consider real values for both \(\omega \) and \(k \). Mathematically speaking, what should be done about electrons that travel at a material speed exactly equal to the wave speed?“ (ChF) p. 393.

One of the probably most important physical aspects of the considered Kummer functions are in the context of (quantum theory related) Schrödinger operators with a Coulomb potential, (DeJ). The self-adjoint Schrödinger operators with a Coulomb potential correspond to Whittaker equations with parameter \(m = 1/2 \). Therefore, corresponding variational representations of the self-adjoint Whittaker equations (especially the one with the parameter \(m = 1/2 \)) based on the extended \(H_{1/2} \) (energy) Hilbert space result into convergent energy norm estimates governing also 3D-Newton/Coulomb potential singularities.

The current abstract, functional analysis framework to model physical processes as neutron transport, radiative transfer, rarified gas dynamics, lepton scattering is about a single abstract transport equation in the form \(\frac{d}{dx}(T(\varphi(x))) = -A(\varphi)(x) \), where the left hand side describes the free streaming and the right hand side describes the collisions (GaA). Krein space methods (going along with the theory of „linear operators in space with an indefinite metric“, (AzT), (AzT1), (BoJ)) can be used to derive unique solvability of such abstract linear, kinetic equations, like Landau (Fokker-Planck) type equations, (GaA).

The eigenvalue equations of the (hyperbolic-type) Whittaker self-adjoint operators \(H_{\beta,m} \) (on the domain of functions, that behave properly near zero) for the eigenvalue (energy) \(-1/4\), is given by the Whittaker equations. The (hyperbolic-type) Whittaker equations can be reduced to the confluent hypergeometric (Kummer) equations. The Kummer function related Bessel functions are annihilated by the general Whittaker operator; the asymptotics of zero-energy eigenfunctions near zero of the Whittaker operator with value \(m = 1/2 \) is \(c \cdot (1 + O(x \log(x))). \)

We note that the hyperbolic-type Whittaker equations get trigonometric (or elliptic)-type Whittaker equations by replacing the \(x \) variable by \(\pm ix \) and by replacing the parameter \(\beta \) by \(\mp i\beta \) of the concerned Whittaker operator \(H_{\beta,m} \). The trigonometric-type Whittaker equations is related to the eigenvalue (energy) \(+1/4\), (DeJ).

Vlasov's mathematical argument for the Vlasov equation as a proper microscopic kinetic description of hot plasma fluids, alternatively to the Landau equation was, that „this model of pair collisions is formally (!) not applicable to Coulomb interaction due to the divergence of the kinetic terms“. The proposed Hilbert space based quantum gravity model ensures the convergence of the Coulomb potential related singularity.

The Landau damping phenomenon is about "wave damping w/o energy dissipation by collisions in plasma", because electrons are faster or slower than the wave and a Maxwellian distribution has a higher number of slower than faster electrons as the wave. As a consequence, there are more particles taking energy from the wave than vice versa, while the wave is damped ((BJ)).

The Landau damping property is complementary to the properties of electro-magnetic forces, which weaken themselves spontaneously over time w/o increase of entropy or friction. "It involves coupling between single-particles and collective aspects of plasma behavior. ...this topic is related to one of the main unsolved questions in physics. Landau damping involves a flow of energy between single particles on the one hand side, and collective excitations of plasma on the other side", (DeR) p. 94.

"In its purest form, Landau damping represents a phase-space behavior peculiar to collisionless systems. Analogos to Landau damping exist, for example, in the interactions of stars in a galaxy at the Lindblad resonances of a spiral downwavy wave. Such resonances in an inhomogeneous medium can produce wave absorption (in space rather than in time), which does not usually happen in fluid systems in the absence of dissipative forces. An exception in the behavior of corotation resonances for density waves in a gaseous medium", (ShF) p. 402. In other words, the Landau damping phenomenon can be interpreted as the capability of stars to organize themselves in a stable arrangement.
In (MoC) a proof is provided for the Landau damping phenomenon based on the Vlasov equation using analytical norm estimates. Neither the Vlasov equation itself (a collisions-less equation to model wave damping w/o energy dissipation by collisions in plasma) nor the application of analytical norm estimates (a hammer being used for nuclear fission) are appropriate to model or "to prove" hot plasma physical phenomena. Alternatively, we propose a weak variational PDE representation of the Coulomb force based Landau equation in the proposed distributional Hilbert space framework. The counterparts of the analytical norms in (Moc) are given by the related norm of the exponential decay inner product

$$ (x, y)_{\alpha(t)} = \sum_k \sigma_k^\alpha e^{-\sqrt{\sigma_k^\alpha}(x, \varphi_k)(y, \varphi_k)}, \quad \|x\|_{\alpha(t)}^2 := (x, x)_{\alpha(t)} $$

accompanied by wavelet analysis capabilities. The alternative approach also avoids the (physically not relevant) Penrose stability criterion assumption. In case of grazing collisions, the kernel function B of the collision integral operator presents singularities with bounded orders, e.g. the Coloumb (Newtonian) potential related singularity. In case of non-grazing collisions, the kernel function B presents singularities of an arbitrarily high order, being governed by the $\|x\|_{\alpha(t)}^2$-norm. Mathematically speaking, the proposed $H_{1/2}$-based (strong and weak) Landau-Poisson-Maxwell PDO systems cover all types of PDE, which are parabolic-elliptic-hyperbolic PDE, while the differentiated (!) standard Maxwell equations result into the (hyperbolic) wave equation, defining the principle of maximal electro-magnetic information exchange by the speed of light and all other related special and general relativity theory aspects.

Conceptually speaking the parabolic Landau (evolution) equation connects the elliptic and hyperbolic (space-time) quantum world.

We further note, that the elliptic vs. hyperbolic "worlds" are very much in line with D. Bohm’s notions of implicate and explicate order, (BoD):

"Rather, an entirely different sort of basic connection of elements is possible, from which our ordinary notions of space and time, along with those of separately existent material particles, are abstracted as forms derived from the deeper order. These ordinary notions in fact appear in what is called the explicate or unfolded order, which is a special and distinguished form contained within the general totality of all the implicate orders… Explicate order arises primarily as a certain aspect of sense perception and of experience with the content of such sense perception. It may be added that, in physics, explicate order generally reveals itself in the sensibly observable results of functioning of an instrument. … What is common to the functioning of instruments generally used in physical research is that the sensibly perceptible content is ultimately describable in terms of a Euclidean system of order and measure, i.e., one that can adequately be understood in terms of ordinary Euclidean geometry. … The general transformations are considered to be the essential determining features of a geometry in a Euclidean space of three dimensions; those are displacement operators, rotation operators and the dilatation operator."

The hyperbolic world in the standard statistics (reflexiv) Hilbert space framework L_2 is about statistical thermodynamics and related Shannon (discrete) entropy, based on the countable spectrum of the considered differential operators with range L_2.

The norm of the quantum $H_{-1/2}$ elements is governed by the sum of the corresponding "observables" L_2 norm and the exponential decay norm, while both summands are interwoven by a parameter, which can be appropriately chosen to model the influencing & balancing contribution of underlying "ground state" energy effect ("time-independent "action""), see also below.

With regards to the proposed integrated SMEP and gravity model, the "between bodies interacting" force in the Boltzmann equation is decomposed into two "forces" defined by a corresponding (Hamiltonian formalism based) integrated (kinematical & dynamical) energy concept. This is achieved by considering the Landau integral operator equation in a weak $H_{-1/2}$ Hilbert space framework. The Coulomb force (Poisson equation based) force and the Lorentz (electro-magnetic) force (Maxwell equation based) are replaced by the concept of underlying related kinematical and (complementary, not only electro-magnetic) dynamical energy, modelled as decomposition of the (energy) Hilbert space $H_{1/2} = H_1 \otimes H_2$.
With regards to the Maxwell equations we recall that the components of the electric and magnetic field forces E, H build the 4-dimensional electromagnetic field force tensor $F_{ik} = (E, H)$. The Maxwell stress tensor $s(i,k)$ is built on the field force tensor in combination with the Dirac function. The standard Maxwell operator is not coercive. For the time-harmonic Maxwell equations, (KiA), there is a coercive bilinear form provided, containing tangential derivatives of the normal and tangential components of the field on the boundary, vanishing on the subspace $H_{1/2}$, (CoM) below. In the proposed $H_{-1/2}$ framework the Dirac function is replaced by $H_{-1/2}$ distributions to model point/surface densities. The Laplace operator of the Poisson equation also defines a coercive bilinear form (see also (WeP) below. Thus, in the proposed new framework standard and complementary variational methods can be applied, based on coercive bilinear forms.

With regards to the changes coming along with the above proposed quantum element/quantum energy distributional Hilbert space framework we further note:

- normal and tangential derivatives, mass density, and „flow through a surface“ are replaced by Plemelj’s Stieltjes’ integral based concept of the notions „mass“ and „flux“ at each point of a surface (PlJ); the definitions require less regularity assumptions to the underlying potential function; we mention that the Vlasov-Poisson-Boltzmann system is about the Poisson potential function defining the forces term F in the general Boltzmann equation, $(LiP1)$

- the extended Maxwell equations (making the Yang-Mills equation superfluous & enabling an unique stabil 3D-NSE Cauchy problem solution with appropriately defined distributional initial value function) define a coercive bilinear form in the related variational equation representation; we mention that the Vlasov-Maxwell-Boltzmann system is about the (collision-free) Lorentz potential function defining the forces term F in the general Boltzmann equation, $(LiP1)$

 - the role of the Gaussian density function to measure the statistics in the observable space H_{0} can be extended by the mathematical microscope wavelet tool 'unfolding' a function over the one-dimensional space R into a function over the two-dimensional half-plane of “positions” and “details”

 - in general, the usage of a $H_{-1/2}$ Hilbert space framework allows a variational calculus with differentials and related pseudo-differential equations, including Gateaux and Frechet differentials, (VaM).

The three Millennium problem solutions, RH, NSE, YME, and a Hilbert scale based quantum geometrodynamics

Klaus Braun
July 30, 2020

www.fuchs-braun.com

„looking back, part (B)“
on a 10 year journey to ...

3D-NSE and YME mass gap solutions
coming along with
a distributional Hilbert space based
quantum gravity theory

The proposed quantum energy Hilbert space $H_{1/2}$ (resp. the proposed quantum element Hilbert space $H_{-1/2}$) applied in a weak variational representation framework of affected PDE (governed by the extremal principles of Ritz (potential energy) and Noble (complementary energy), (ArA), (VeW)) is decomposed into a “kinematical” energy / “kinematical” action Hilbert space H_1 (resp. its underlying „fermions“ element Hilbert space H_0) and its complementary “ground state“ energy Hilbert space H^+_1 (resp. its underlying „bosons“ element Hilbert space H^+_0), i.e. $H_{1/2} = H_1 \otimes H^+_1$ resp. $H_{-1/2} = H_0 \otimes H^+_0$. Mathematically speaking this is about a decomposition of the (energy) Hilbert space $H_{1/2}$ into a “granular“, compactly (and dense) embedded Hilbert space H_1 into $H_{1/2}$ and its complementary closed sub-space H^+_1. The Riemann/Einstein (metric) space framework (i.e. the differentiable manifolds & affine connexions concepts) is replaced by this truly geometric Hilbert space based quantum element space $H_{1/2} = H_0 \otimes H^+_0$ and its related (dual) quantum energy space $H_{1/2} = H_1 \otimes H^+_1$ framework. The Weyl postulate is based on an assumed fluid/substrate cosmological model. The cosmological principle is about the spatial homogeneous and isotropic distribution of matter in the universe on a large enough scale. The proposed $H_{1/2} = H_1 \otimes H^+_1$ quantum energy space model is about a truly ground state energy space H^+_1 (with cardinality in the size of the field of real numbers) and a truly matter space H_1 (with cardinality at most in the size of the (countable) sets of integers or rational numbers, i.e. „Aleph Zero“). The latter energy Hilbert space can be interpreted as a disturbance of the truly homogeneous isotropic universe H^+_1 model. A H_1 (time scale problem relevant) corresponding coarse graining entropy in the (H_0, H_1) framework on the (micro/quantum kinematical) fermions granularity level can be interpreted as the tendency of (condensed H_1 energy) fermions to “move back” to the (quantum) ground state energy level of H^+_1. In other words, there is a non-zero ground state energy H^+_1; the coarse graining entropy in the countable (H_0, H_1) framework can be interpreted as the energy state minimization law of kinematical fermions' energy/action. The other way around, the ground state energy space H^+_1 „generates“ fermions modelled by the orthogonal projection operator $P : H^+_1 \to H_1$ with respect to the $H_0 = L^2$ (standard statistics) framework („self-adjointness break down“). The overall physical principle in the $H_{1/2}$ quantum energy Hilbert space is given by the „energy principle“ (governed by the energy conservation law). The physical principle in the „granular“ kinematical quantum energy Hilbert space H_1 (in the sense of the compactly embeddedness of H_1 into $H_{1/2}$), is given by the (original) „Leibniz least action principle“, applicable for (truly) fermions (elements), only.

The distributional (quantum element) Hilbert space $H_{-1/2}$ resp. its underlying norm (i.e. with its underlying "length measurements") is governed by the sum of the standard (quantum mechanics state / statistics) $L^2 = H_0$-Hilbert space norm and an "exponential decay" (entropy measurements, (BrK1) note 2, (BrK6)) norm, which is weaker than any distributional "polynomial decay" norm (NiJ1). With additionally assumed regularity to the solutions of the proposed weak PDE representations, which is without any quanta theoretical physical meaning, the corresponding approximation solutions of the related classical PDE are well defined (VeW), i.e. the scalability from the "very small" quantum level to the "very large" classical level is ensured, also including now, e.g. the physical concept of "force" (based on the Lagrange formalism) or the mathematical concept of "continuity" (due to the Sobolev embedding theorem). At the same point in time H. Weyl's requirement concerning a truly infinitesimal geometry are fulfilled as well, because ...

((WeH*) p. 30): ... a truly infinitesimal geometry (wahrhafte Nahegeometrie) ... should know a transfer principle for length measurements between infinitely close points only ...
The proposed quantum gravity model ...

... overcomes the challenges to prove well defined 3D-non-linear, non-stationary (Serrin gap challenge) Navier-Stokes Equations (see (B17) below) and Yang-Mills equations (mass gap challenge).

The Yang-Mills Equations (YME) were built to address an “electron’s very short life cycle” due to immediate energy loss, when modelled as a field by the Maxwell equations. This is due to the fact, that the Maxwell equations do not allow standing (stationary) waves. The prize to be paid with the introduction of the YME is the “YME mass gap” problem.

Regarding the Maxwell equations we quote from A. Einstein (Grundzüge der Relativitätstheorie, Vieweg Verlag, WTB, Vol. 58, p. 52):

„Die MAXWELLSchen Gleichungen bestimmen das elektromagnetische Feld, wenn die Verteilung der elektrischen Ströme und Ladungen bekannt ist. Die Gesetze aber, nach denen sich Ströme und Ladungen verhalten, sind uns nicht bekannt. … Wir kennen daher, falls wir überhaupt die MAXWELLSchen Gleichungen zugrunde legen dürfen, den Energietensor für die elektromagnetischen Felder nur außerhalb der Elementarteilichen”.

The variational representation of the Maxwell equations in the proposed quantum element/energy Hilbert space framework \((H_{-1/2} = H_0 \otimes H_1^1, H_{1/2} = H_1 \otimes H_1^1)\) conserves the two \(H_1\) –based progressive (1-parameter (space or time variable)) electric and magnetic waves while also allowing additional standing (stationary) \(H_1^1\) –based (2-parameter) wavelets (merging undulation and emission theory). The vacuum solution of the first ones conserves the linkage to the classical wave equations for the electric and magnetic field (while this transformation still requires additional, physical not relevant regularity requirements to the underlying solution), while the second ones provides additional information regarding the elementary particle dynamics.

The handicaps of today´s physical „transport” models are about „inappropriate” physical solution behaviors for \(t \to 0\), as well as blow-up effects after a certain point in time \((t \geq T_{\text{Blow-up}})\), or even no existing bounded solution at all.

The singularity behavior and the blow-up effects are the result of the chosen Sobolev space framework governed by the corresponding Sobolev embedding theorems:

The energy inequality (based on Sobolev embedding theorems) of the 2D-NSE is governed by the ODE \(y'(t) = y^2(t), y(0) = y_0\) with the solution \(y(t) = y_0/(1 - t \cdot y_0)\) becoming infinite in finite time (blow-up effect). The energy inequality (based on Sobolev embedding theorems) of the 3D-NSE is governed by the ODE \(y'(t) = y^3(t), y(0) = y_0\) i.e. there is no global global boundedness at all. As the handicaps of today´s physical „transport” models are about „inappropriate” physical solution behaviors for \(t \to 0\), as well as blow-up effects after a certain point in time \((t \geq T_{\text{Blow-up}})\), or even no existing bounded solution at all.

The newly proposed “fluid element” Hilbert space \(H_{-1/2}\) with corresponding alternative energy (“velocity”) space \(H_{1/2}\) leads to Ricci ODE estimates in the form \(y'(t) \leq c \cdot y^{1/2}(t)\), based on \(\|H_{1/2}\) –energy” norm inequality (newly including contributions from the non-linear term), based a corresponding Sobolevskii estimate (GIY) lemma 3.2), given by

\[
\frac{1}{2} \frac{d}{dt} \|u\|_{-1/2}^2 + \|u\|_{1/2}^2 \leq \|(Bu, u, u)\|_{-1/2} \leq \|u\|_{-1/2} \|Bu\|_{-1/2} \equiv \|u\|_{-1/2} A^{-1/4} \|Bu\|_{0}^0.
\]

Putting \(y(t): = \|u(t)\|_{2}^2\) one gets \(y'(t) \leq c \cdot \|u\|_{1}^2 \cdot y^{1/2}(t)\), resulting into the a priori estimate

\[
\|u(t)\|_{-1/2} \leq \|u(0)\|_{-1/2} + \int_0^t \|u\|_{1/2}^2 ds \leq c \left[\|u_0\|_{-1/2} + \|u_0\|_{0}^2\right].
\]

The proposed quantum energy \(H_{1/2}\) decomposition concept avoids the „adding concept” of several hamiltonians of the LQG. As a consequence, e.g. the Yang-Mills mass gap problem "just" disappears. With respect to the Einstein field equations we note that the Hilbert-Einstein action functional defined in a (differentiable) manifold framework was derived in the same way as Helmholtz derived the (classical) electro-magnetic elementary particles state equations and the equation of the second law of thermodynamics. Helmholtz’s approach is based on an extension of the „Hamiltonian least action” principle, considering additionally also external forces. In other words, the proposed (dual) quantum element/ quantum energy Hilbert space pair \((H_{-1/2}, H_{1/2})\) provides an appropriate Hilbert space framework for an alternative Hilbert-Einstein action functional, derived from the Newton potential equation. At the same point in time the dual quantum element/ energy Hilbert space framework overcomes the non-local character challenge of the current quantum theory.
In the proposed quantum gravity model ...

... the Riemann/Einstein (metric) space framework (differentiable manifolds & affine connexion) is replaced by a truly geometric Hilbert space based (quantum element & quantum energy space) framework ($H_{1/2}, H_1$).

The Hilbert space $H_{1/2}$ is decomposed into a "kinematical" energy / "kinematical" action Hilbert space H_1 and its complementary "zero-point" energy & "zero-kinematical" action Hilbert space H_1^\perp; mathematically speaking this is about a decomposition of the Hilbert space $H_{1/2}$ into a "coarse graining", compactly (dense) embedded Hilbert space H_1 of $H_{1/2}$ and its complementary closed subspace H_1^\perp. Conceptually this decomposition corresponds to the "decomposition" of the field of real numbers into rational (countable) and irrational (non countable) numbers.

Current physical classical PDE model solutions are considered as approximation solutions to the underlying weak variational formulation in the proposed Hilbert space framework and not the other way around, e.g. (BrK6), (VeW). The weak variational models are governed by a common energy model concept (BrK), (BrK1), while the related "forces" phenomena become part of the specific corresponding classical PDE model, only. Therefore, for example the famous Einstein formula $E = mc^2$ is only an approximation model restricted to the kinematical energy space H_1, only.

We mention that a mathematical analysis of physical non-linear PDEs (e.g. the kinetical Landau-Boltzmann equations) is often enabled by a valid Garding inequality, which can be interpreted as a decomposition of the non-linear operator into the sum of a linear, self-adjoint operator and a compact disturbance operator, e.g. (LiP1).

The distributional (quantum state) Hilbert space framework resp. its underlying norm (i.e. with its underlying "length measurements") is governed by the sum of the standard (quantum mechanics / statistics) L_2-Hilbert space norm and an "exponential decay" (entropy measurements, (BrK1) note 2. (BrK6)) norm, which is weaker than any distributional "polynomial decay" norm (NiJ1). With additionally assumed regularity to the solutions of the proposed weak PDE representations, which is without any quanta theoretical physical meaning, the corresponding approximation solutions of the related classical PDE are well defined (VeW), i.e. the scalability from the "very small" quantum level to the "very large" classical level is ensured, also including now, e.g. the physical concept of "force" (based on the Lagrange formalism) or the mathematical concept of "continuity" (due to the Sobolev embedding theorem). At the same point in time H. Weyl's requirement concerning a truly infinitesimal geometry (([WeH] p. 30), are fulfilled as well, because ...

... a truly infinitesimal geometry (wahrhafte Nahegeometrie) ... should know a transfer principle for length measurements between infinitely close points only ... (WeH*)

The physical principle for the proposed kinematical Hilbert space H_1 is the (original) "Leibniz least action" principle, which is based on the "Leibniz action element" $w \cdot dt$ resp. $m \cdot v \cdot ds$ defined for any arbitrary system of arbitrary matter particles being subject to arbitrary forces. Leibniz's "actio" is defined as the action of the movement of a single matter particle during a certain time period. The least action principle in combination with Euler's variational calculus enabled multiple ODE or PDE models of physical laws, (KnA).

The "Euler-Leibniz least action" extension is based on the extension of the "Leibniz action element" $w \cdot dt$ resp. $m \cdot v \cdot ds$ to the "Hamiltonian action element" $H \cdot dt$, whereby H denotes the difference between kinetic and potential energy (KnA). In other words, applying the "Euler-Leibniz least action" extension to the kinematical H_1 Hilbert space framework would additionally include the concept of potential energy into this framework, (KnA). In order to avoid the "Euler-Leibniz least action" extension the required potential energy space is modelled as the complementary closed sub-space H_1^\perp of H_1 with respect to the proposed $H_{1/2} = H_1 \otimes H_1^\perp$ quantum energy Hilbert space norm. The corresponding quantum state Hilbert space model is then given by the distributional Hilbert space $H_{1/2}$ with its corresponding decomposition into $H_0 \otimes H_1^\perp$. We note that the Dirac delta distribution "function" (playing a key role in the field theory of a Dirac-electron and the Klein-Gordon equation) is an element of $H_{1/2} - \varepsilon_1$ ($\varepsilon > 0$, n denotes the space-dimension), i.e. even in the $n = 1$ best case the quantum states do have better regularity than the Dirac "function".

We note that the Sobolev Hilbert space $H_{1/2}$ plays also a key role in (BiI), (BoJ1), (NaS).
The proposed quantum gravity model ...

... enables a coarse graining entropy in the standard statistics $L_2 = H_0$ framework.

The overall physical principle in the $H_{1/2}$ quantum energy Hilbert space is given by the „energy principle“ (governed by the energy conservation law). The physical principle in the compactly embedded, „granular“ (in the sense of compactly embeddedness), kinematical quantum energy Hilbert space H_1 is given by the (original) „Leibniz least action principle“, applicable for (truly) fermions, only. The H_1 inner product and its related norm is defined by the variational (Friedrichs) extension of the Laplace (Newton) potential operator with the corresponding domain $H_{1/2}$. For an approximation theory with respect to the concept of „energy functional minimization“ in a compactly embedded „approximation“ sub-space of a Hilbert space we refer to (VeW), (NIJ1). The required “time differential/variable“ in the H_1 framework can be defined via the “action variable“, derived as the solution of a corresponding ODE, (HeW). This concept is in line with the “thermal time hypothesis“ of the loop quantum gravity (LQG), (RoC) 3.4.

The proposed quantum state Hilbert space $H_{-1/2}$ with its separable and reflexive Hilbert sub-space $H_0 = L_2$ is also in line with a similar geometric (Hilbert space) structure as the proposed kinematical (separable Hilbert quantum-) state space in the loop quantum gravity theory, (RoC) 6.2, 6.4.2). Unfortunately, the extension of the kinematical state space to Yang-Mills fields „yields to a no longer sensible quantum state space, as this extension yields to a nonseparable Hilbert space“, (RoC) 7.2.1. Additionally the LQG requires another extension to fermions by a Grassmann-valued fermion field. This „extension“ concept follows the underlying baseline concept of LQG, which is about “defining the coupled gravity + matter system by adding the terms defining the matter dynamics to the gravitational relativistic hamiltonian“, ((RoC) (7.3), (7.32)).

The current phase space concept can be easily adapted to the Hilbert space pairs $H_0 = (H_0, H_1)$ resp. $H_{-1/2} = (H_{-1/2}, H_{1/2})$ coming along with the Lebesgue integral resp. the Plemelj/Stieltjes integral concepts (Brk). The Boltzmann (statistics) entropy formula in the context of the physical phase space can be interpreted as a coarse graining entropy in the standard H_0 (state/energy) framework. The Hilbert space pair H_0 comes along with Dirac's mass density concept. It is dense in $H_{-1/2}$ with respect to the $L_{-1/2}$ norm, coming along with Plemelj's mass element concept; the decomposition of $H_{-1/2}$ into H_0 and its complementary pair of two closed sub-spaces enables the definition of a $H_{-1/2}$-based entropy definition, which can be derived from a set of axioms formulated in the separable H_0 framework.

A coarse graining entropy in the H_0 framework on the (micro/quantum) fermions granularity level can be interpreted as the tendency of (condensed H_1 energy) fermions to "move back" to the (quantum) ground state energy level of H_1. The corresponding “coarse graining entropy" in the universe can be interpreted as an alternative model for the (macro/cosmos) "expanding" universe phenomenon. The Leibniz-Einstein vision of a purely relational theory concerning the concepts of matter, space, time, event, causality etc. is modelled by (weak) variational representation of elliptic PDE in a H^2 framework, modelling a "pre-physical, ground state (zero-point) energy / zero-action world"; the step to "physical world" is triggered by the first fermion creation, modelled as orthogonal projection operator from the H^2 domain onto the granular "near distance action" fermions energy space range H_1, being accompanied by the corresponding concepts of events, causality, time and space (resp. space-time). The "physical H_1 kinematical energy world" is then governed by corresponding parabolic or hyperbolic PDE variational representations (with the "heat equation" resp. the (time-asymmetrical) "wave equation" model problems or, more precisely, the corresponding well posed Cauchy problems in the considered Hilbert space framework (CoR). We mention that the notions "elliptic" and "hyperbolic" in the notions "elliptic PDE" resp. "hyperbolic PDE" are motivated/related by those geometric figures, while the notion "parabolic PDE" is not related to a parabola, but the a simple geometric straight line.
The proposed quantum gravity model ...

- ... is about truly bosons (i.e. "particles" w/o mass), modelled as elements of the H_1-complementary sub-space H_1^\perp of the overall energy Hilbert space $H_{1/2}$. Therefore, the main gap of Dirac's quantum theory of radiation, i.e. the small term representing the coupling energy of the atom and the radiation field, becomes part of the H_1-complementary (truly bosons) sub-space H_1^\perp of the overall energy Hilbert space $H_{1/2}$

- ... allows to revisit Einstein's thoughts on ETHER AND THE THEORY OF RELATIVITY
An Address delivered on May 5th, 1920, in the University of Leyden

in the context of the space-time theory and the kinematics of the special theory of relativity modelled on the Maxwell-Lorentz theory of the electromagnetic field.

Einstein’s field equations are hyperbolic and allow so called „time bomb solutions“ which spreads along bi-characteristic or characteristic hyper surfaces. Actual quantum theories are talking about „inflations“, which blew up the germ of the universe in the very first state. The inflation field due to these concepts are not smooth, but containing fluctuation quanta. The action of those fluctuations create traces into a large area of space. The existence of quantum fluctuations (in a „world“ without a time arrow and without entropy) has been verified by the Casimir and the Lamb shift effects.

The standard „big bang“ theory assume that the creation of the first fermions were the „birthday“ of the universe. This „one-time-event“ was caused by the disturbance of an „inflation“ energy field called, the fluctuations. In the proposed quantum gravity model the „birthday“ of the „coarse-grained“ fermion-energy Hilbert (sub-) space H_1 of $H_{1/2}$ is interpreted as first disturbance of the purely (pre-universe) boson energy field H_1^\perp with not existing entropy. The undisturbed boson field is part of the proposed model, in opposite to the Big-Bang theory. It can be interpreted as the (in sync with the Casimir effect) not empty quantum vacuum; its oscillation is the cosmic background radiation, which contains all features of dynamic energies.

Spectral analysis is the main tool to interprete all observed cosmic „light data“. We note that the Fourier analysis based applied spectral analysis methods (e.g. cosmological distance measurement or the Doppler effect in combination with the Hubble diagram leading to the interpretations of moving apart galaxies from each other galaxies with superluminal velocity in an expanding universe) is only defined in the „granular“ kinematical Hilbert space H_1, i.e. the proposed quantum gravity model allows an re-interpretation of the observed cosmological background radiation phenomenon.

With the „birthday“ of the fermions the correspondingly adapted variational representation of the wave equation is then governed by the purely kinematical (fermions) energy Hilbert space H_1, while its underlying initial values are purely (undisturbed) vacuum (CBR, bosons) energy data from H_1^\perp. As a consequence, the wave equation becomes time-asymmetric and the second law of (kinematical) thermodynamics (coming along with the notions „mass“, „time“, „space“ etc.) can be interpreted (and derived from this wave equation) as „action“ principle of the ground state energy to damp and finally eliminate (remedy the deficiency) of any kinematical energy „disturbance“.

Plasma is the fourth state of matter, where from general relativity and quantum theory it is known that all of them are fakes resp. interim specific mathematical model items. If plasma is considered as sufficiently collisional (cold plasma), then it can be well-described by fluid-mechanical equations. The „bosons“ H_1^\perp closed sub-space of the proposed energy Hilbert space $H_{1/2}$ also allows an alternative modelling of (hot) plasma physics phenomena, e.g. enabling an alternative model of the "Cosmological Microwave Background Radiation" (CMBR) phenomenon with its underlying concepts of an early (or primordial) universe (where all cosmic matter was entirely ionized) as the period preceding the recombination period, where electrons and nuclei recombined and ionisation progressively decreased.
A quantum gravity model requires some goodbyes from current postulates of quantum mechanics/dynamics models and Einstein’s field model as per definition both theories are not compatible: (KaM) p. 12: „Because general relativity and quantum mechanics can be derived from a small set of postulates, one or more of these postulates must be wrong. The key must be to drop one of our commonsense assumptions about Nature (with respect to the underlying physical models, which are (1) continuity, (2) causality, (3) unitarity, (4) locality, (5) point particles, on which we have constructed general relativity and quantum mechanics.”

The approach of this homepage is about challenging the postulates of both theories with respect to the underlying mathematical postulated concepts. The key ingredient of quantum mechanics is the $L_2 = H_0$ Hilbert space to model quantum states with correspondingly related quantum momenta as elements of the Hilbert space H_1.

The main gap of Dirac’s quantum theory of radiation is the small term representing the coupling energy of the atom and the radiation field. From E. Fermi’s famous paper, „Quantum Theory for Radiation”, Reviews of Modern Physics, Vol. 4, 1932, we quote:

„Dirac’s theory of radiation is based on a very simple idea; instead of considering an atom and the radiation field with which it interacts as two distinct systems, he treats them as a single system whose energy is the sum of three terms: one representing the energy of the atom, a second representing the electromagnetic energy of the radiation field, and a small term representing the coupling energy of the atom and the radiation field.”

The key ingredients of Einstein’s field equations are Riemann’s differentiable manifolds (whereby the differentiability condition is w/o any physical meaning) in combination with the concept of affine connexion (enabled by the differentiability condition) to build the metric γ based (Riemann manifold) metric space (M, g).

The main gap of the Einstein field equations is, that it does not fulfill Leibniz’s requirement, that “there is no space, where no matter exists”; the GRT field equations provide also solutions for a vacuum, i.e. the concept of “space-time” does not vanishes in a matter-free universe.

From a mathematical perspective, vector analysis cannot be used in 4-dimensions (there is no exterior product) and the tensors give no physical insight (they are just tables of coefficients). Additionally, the Einstein field equations are not well-posed in the sense, that there are infinitely many possible solutions (while the cardinality measure of “infinite” is in the size of the cardinality of the real numbers, not only of the integers), a unique solution is conceptually not possible (also from a physical perspective, as the equations model the physical stage and the physical “actors” on that state at the same point in time) and there is no chance for any Cauchy problem representation to enable “continuous dependency” of an unique solution from given initial value data.

The key ingredients of the proposed quantum gravity theory is about differential forms equipped with an inner product of a distributional Hilbert space. The (nonlinear) stability of the underlying Minkowski space framework requires initial data sets with finite energy and linear and angular momentum (ChD). From Terho (Max) Haikonen, Notes on Differential Forms and Spacetime, we quote:

„The remarkable fact is that the Maxwell equations, the Einstein Field equations and the Schrödinger equation in quantum mechanics can be understood as features of the 4-dimensional Minkowski space. ... The electromagnetic theory gets special variety of the fact that there are two kinds of charges, +/-q. Charges of different signs attract each other, of the same sign expel. Otherwise e.g. shielding would not be possible. Another special feature is the electric current which flows in conductors. ... (This) formulation is valid and has been used e.g. by (TaM). ... The Einstein Field Equations can be seen as a consequence of the Minkowki space being closed, when the space is allowed to be curved. ...In gravity there is only one kind of mass m, and two masses always attract each other. The mass can flow, in normal temperatures, only in free space or in pipes with a hole. ... Vector analysis cannot be used in 4-dimensions (there is no exterior product) and the tensors give no physical insight (they are just tables of coefficients).”

In (TaM) the weak field approximation is used to express the theory of general relativity in a Maxwell-type structure comparable to electromagnetism, where every electromagnetic field is coupled to a gravitoelectric and gravitomagnetic field.
The proposed quantum gravity model ...

... is based on the following changes:

(1) the Dirac „function“ to model the charge of a point particle (going along with a Hilbert space $\mathcal{H}_{-\frac{n}{2}-\epsilon}$, where n denotes the space dimension, and $\epsilon > 0$), is replaced by elements of the Hilbert space $\mathcal{H}_{-1/2}$

(2) Dirac’s concept of a spin of an electron is replaced by quanta elements of the (dual) Hilbert space pair $\mathcal{H}_{-1/2}$ (fermion & boson elements) and $\mathcal{H}_{1/2}$ (momentum & potential energy)

(3) the solution of classical theoretical physics PDE is interpreted as an approximation solution to the solution of the underlying (weak) variational PDE representation of the PDE and not the other way around; from a mathematical point of view this allows reduced regularity requirements of the concerned PDE solution(s)

(4) all „Nature forces“ are based on the same concept of underlying „potential (bosons) and kinetic (fermions) energies“; the (dual) Hilbert space pair $\mathcal{H}_{-1/2}$ and $\mathcal{H}_{1/2}$ ensures a valid Hamiltonian formalism, while the applied Lagrange formalism of the SMEP is not valid due to reduced regularity assumptions of variational solution in the above Hilbert space pair framework. Both formalisms can be used to derive the same equations of motion, where they both apply. However, only the Hamiltonian mechanics is closely related to symplectic geometry, where the only local geometric invariant is the dimension, in contrast to the Riemannian geometry, where locally manifolds up to isometry do have geometric invariants: the Riemannian curvature.

With respect to (3) above concerning "scalability" we quote from Smolin L., Einstein's Unfinished Revolution, The search what lie beyond the quantum, xvii:

„In these chapters I hope to convince you that the conceptual problems and raging disagreements that have been bedeviled quantum mechanics since its inception are unsolved and unsolvable, for the simple reason that the theory is wrong. It is highly successful, but incomplete. Our task - ... - must be to go beyond quantum mechanics to a description of the world on an atomic scale that makes sense".

The notion "force" becomes ("only!") an intrinsic part on each of the considered physical situations, mathematically represented as classical PDE, which are governed by mathematical notions like "continuity" or "differentiability". The scale-up capability from weak/quantum (Hilbert space based) variational representations to e.g. continuous or differentiable function spaces is given by the Sobolev embedding theorems.

The newly proposed model also allows to revisit the „Ricci flow“ concept, as being successfully applied in the context of the geometrization of 3-manifolds (e.g. (AnM), (CaH), (CaJ), (HaJ), (ThW), (YeR)). For an overview to the several related topic areas, e.g. parabolic re-scaling, evolution of curvature and geometric quantities under Ricci flow, existence theory, Perelman’s W entropy functional, gradient formulation, total scalar curvature and its relation to the Einstein tensor, we refer to (ToP).

With respect to (4) above we mention that the motivation for the Higgs mechanism is to build the Lagrange density for the weak electromagnetic (union of electromagnetic and weak interaction gauge bosons, represented as $SU(2) \times U(1)$ gauge group); the problem is about the „existence“ of (electro-weak interacting) bosons W^\pm with mass (which is a contradiction in itself) breaking down the symmetry of the Lagrange density. The proposed model is only about truly bosons w/o mass, modelled as elements of the H_1 complementary sub-space of the overall energy Hilbert space $\mathcal{H}_{1/2}$. However, the Lagrange formalism keeps valid for the classical approximation solutions with its underlying notions of "Nature forces". This is due to the fact that the Lagrange and Hamiltonian formalisms are equivalent, if the Legendre transformation is valid, which is the case for the classical approximation solutions, i.e. all measurements of „kinematical“ observations are still covered by the corresponding strong PDE models.
In the following we more detail the main changes and their related impact on current gaps:

(B1) the concept of differentiable manifolds required for properly defined classical Einstein field equations needs to be avoided:

(a) Weyl's world metric to build a "Purely infinitesimal geometry (excerpt)" is still only based on the metric space \((M, g)\). From a mathematical point of view in order to define a geometric framework a metric space is not sufficient (the field of real numbers equipped with the distance metric is a metric space; everyone would agree that this field does not show a geometric structure). The concept of an inner product is required leading to the concept of a Hilbert space. As the related norm of an inner product is a metric, each Hilbert space is also a metric space. Our proposed Hilbert space model provides an alternative approach for a "purely infinitesimal (truly) geometry"

(b) the "differentiability" requirement is without any physical meaning and even continuous manifolds would be hard to be united with a Hilbert space based quantum theory, (KaM) 1.2

(B2) functional analysis, Hilbert spaces and operators build the foundation of quantum mechanics. One famous conclusion out of it, is the Heisenberg uncertainty relationship. When applying an operator in physical models it is not all the time correctly defined as its underlying domain, which is beside the mapping the second essential part of the definition of an operator, is not specified. The standard unspoken domain assumption in quantum mechanics seems to be, that, what ever it is, it needs to fit to the "quantum state" Hilbert space model: this is the Lebesgue integral based \(L^2\) Hilbert space, which is used e.g. in mathematical statistics and physical (Kolmogorow) turbulence and thermodynamics theory; however, the quantum mechanics model requires a Hilbert space, only

(B3) the Dirac "function" concept with its underlying space-time depending (distribution) regularity needs to be avoided just from a mathematical perspective, as well as from its sophisticated physical interpretation as a "mathematical point" particle charge; we note that when picking a real number out of the x-axis the probability that it is an irrational or even a transcendental number is 100%; this is quite an unusual measure of a physical quantity; with respect to (B1) we note that the completeness axiom required to define irrational numbers is also essential for the definition of the notion "continuity"

(B4) replacing the Dirac "function" concept by \(H^{-1/2}\) distributions goes along with the definition of an inner product for differentials (BrK); the replacement can be compared with a replacement of the Archimedean ordered field of "real" numbers by the non-Archimedean ordered field of hyperreal numbers. The latter ones are also called ideal numbers, which goes back to the monadology concept of Leibniz. The term "real" is somehow misleading: every irrational number "is" its own universe, i.e. it is defined as an infinite limit of rational numbers. We note that both fields do have the same cardinality and that the Archimedean axiom basically states, that each positive real number "x" can be "measured" as product of an integer "n" times another real (standard length) number "y". Another non-Archimedean field is the Levi-Civita field

(B5) Hawking S. W., „A Brief History of Time“, chapter "Elementary Particles and the Forces of Nature“:

"All known particles in the universe can be divided into two groups: particles of spin \(\frac{1}{2}\), which make up the matter in the universe, and particles of spin 0, 1, and 2, which give rise to forces between matter particles".

"A particle of spin 0 is like a dot: it looks the same from every direction. A particle of spin 1 is like an arrow: it looks different from different directions. Only if one turns it round a complete revolution (360 degrees) does the particle look the same. A particle of spin 2 is like a double-headed arrow: it looks the same if one turns it round half a revolution (180 degrees). Similarly, higher spin particles look the same if one turns them through smaller fractions of a complete revolution. ... there are particles that do not look the same if one turns them through just one revolution: one has to turn them through two revolutions! Such particles are said to have spin 1/2."
The matter particles obey what is called Pauli's exclusion principle. ... It says that two similar particles cannot exist in the same state; that is, they cannot have both the same position and the same velocity, within the limits given by the uncertainty principle. The exclusion principle is crucial because it explains why matter particles do not collapse to a state of very high density under the influence of the forces produced by the particles of spin 0, 1, and 2; if the matter particles have very nearly the same positions, they must have different velocities, which means that they will not stay in the same position any longer. If the world had been created without the exclusion principle, quarks would not form separate, well-defined protons and neutrons. Nor would these, to gether with electrons, form separate, well-defined atoms. They would all collapse to form a roughly uniform, dense "soup".

Mathematically speaking, the uncertainty principle is caused by different domains of the quantum position and momentum operators. (We note that an operator is only well-defined by both criteria, the mapping rule of the operator and its domain). In other words, putting both physical parameters, position and momentum, as one ("Nature forces" type specific) "spin-" attribute of a corresponding particle type violates the prerequisites for well-defined position and momentum operators.

In our model Dirac's spin(1/2)-concept and its related SMEP interaction particles with spin 0, 1, and 2 are no longer required. All (energy/mass) fermions are modelled as elements of the Hilbert space H_1; the corresponding fermion states are modelled as elements of the corresponding Hilbert space H_0. The complementary sub-space H_0^1 of H_1 in $H_{1/2}$ provides a (closed sub-space) bosons model of "energy/momentum interaction elements" between fermions, replacing the three SMEP "interaction particles" model with spin 0, 1, and 2. The corresponding fermions state Hilbert space is given by H_0, while the corresponding bosons state Hilbert space is given by H_1^1, which is a closed sub-space of $H_{1/2}$. Paul's exclusion principle is still valid and is given implicitly, as the separable Hilbert space H_1 (the "actors") is compactly embedded into $H_{1/2}$ (the "stage"), resp. the separable Hilbert space H_0 (the "actors") is compactly embedded into $H_{1/2}$ (the "stage"); see also (PeR) 1.3, "Phase space, and Boltzmann's definition of entropy".

Therefore, in our model the "Nature forces" phenomena become "just" implicit part of the considered (Hamiltonian formalism based) variational representations of the considered (classical) Partial Differential Equations. We mention that the concept of a compactly embedded, sparable Hilbert space follows the same building principles and related properties, as the field of rational numbers is compactly embedded into the field of real numbers.

(B6) The discrete Shannon entropy is derived from a set of axioms showing a bunch of nice properties that it exhibit. The formally defined related "continuous" entropy based on the Riemann integral concept in (MaC) (Marsh C., Introduction to Continuous Entropy) shows several weaknesses; it "is highly problematic to the point that, on its own, it may not be an entirely useful mathematical quantity".

The current phase space concept can be easily adapted to the Hilbert space pairs $\mathbb{H}_0 := (H_0,H_1)$ resp. $\mathbb{H}_{1/2} := (H_{1/2},H_1^1)$ coming along with the Lebesgue integral resp. the Plemelj/Stieltjes integral concepts (BrK).

The Boltzmann (statistics) entropy formula in the context of the physical phase space can be interpreted as a coarse graining entropy in the $H_0 = L_2$ framework. The Hilbert space pair H_0 comes along with Dirac's mass density concept. It is dense in $H_{1/2}$ (with respect to the $H_{1/2}$ norm), coming along with Plemelj's mass element concept; the decomposition of $H_{1/2}$ into $H_0 = L_2$ and its complementary pair of two closed sub-spaces enables the definition of a $H_{1/2}$-based entropy definition, which can be derived from a set of axioms formulated in the separable $H_0 = L_2$ framework.

The mathematical analysis tool of the fermion Hilbert space H_1 is the Fourier transform governed by the (one-parameter) Fourier waves; the corresponding analysis tool for the complementary closed subspace of H_1 in the $H_{1/2}$ framework is the continuous (two-parameter) wavelet transform, going back to Calderón's reproducing formula for radial L_2-functions with vanishing constant Fourier term (LoA).
(B7) The geometry of the granular fermions Hilbert space H_1 (in the sense of its compactly embeddedness into $H_{1/2}$) in combination with specific properties of the Friedrichs's extension of the Laplacian operator (whereby the latter defines the Newton potential) allows to distinguish between repulsive and attractive fermions:

the Friedrichs's extension of the Laplacian operator is a selfadjoint, bounded operator B with domain H_1. Thus, the operator B induces a decomposition of H_1 into the direct sum of two subspaces, enabling the definition of a potential and a corresponding "grad" potential operator. Then a potential criterion defines a manifold, which represents a hyperboloid in the Hilbert space H_1 with corresponding hyperbolic and conical regions ((VaM) 11.2). This direct sum of two subspaces of H_1 is proposed as a model to distinguish between repulsive and attractive fermions

(B8) the regularity of the distribution Hilbert space H_{-a} containing the Dirac function is given by the condition $a = n/2 + \epsilon$ ($\epsilon > 0$), where n denotes the space dimension of the underlying \mathbb{R}^n field; the Sobolev embedding theorem in the form that H_a is continuously embedded into C^0, denoting the Banach space of continuous functions, provides the linkage of the Dirac point charge concept the concept of continuity, where both notions a purely mathematical concepts (without any physical meanings on elementary quantum level) even defined resp. demanded by axioms, only; at the same point in time both concepts are used in all classical theoretical physics (Ordinary or Partial Differential Equation, ODE or PDE) model

(B9) The classical Maxwell Equations are PDE with respect to the space parameter χ and ODE with respect to the time parameter t. They build the foundation of Lorentz’s theory of electrons. Its underlying Lorentz transformation builds the foundation of Einstein’s SRT. The electric and magnetic fields in "(source) free regions", i.e. regions without charges and magnetic fields (i.e. even a Dirac point particle charge is not allowed), can travel with any shape, and will propagate at a single speed, which turned out to be light velocity c. Mathematically, the underlying hyperbolic wave equations are derived by applying the curl operator to the electric and magnetic field equations (going along with additional regularity requirements to both fields) in source free regions. Then both equations reduce to the identical vector wave equation with the single parameter c. Therefore, applying the (hyperbolic, time-symmetric) wave equation as model for gravitation waves and corresponding ODEs to "calculate back" to early universe states already anticipates that "one of the assumed nicest properties of the universe" is based on the assumption that every vacuum is source free

(B10) Costabel M., "A Coercive Bilinear Form of Maxwell's Equations, J. Math. Anal. Appl., Vol 157, No 2, 1991, 527-541: "When one wants to treat the time-harmonic Maxwell equations with variational methods, one has to face the problem that natural bilinera form is not coercive on the whole Sobolev space $H(1)$. On can however, make it coercive by adding a certain bilinear on the boundary of the domain". A variational representation of the Maxwell equations in an extended Hilbert quantum state framework $H_{-1/2}$ with source free regions in H_0 resp. H_1, only would still allow classical Maxwell and wave equation models as approximations to the "truly" quantum gravity model. However, the concepts of space, time, cause and action are only defined and valid as part of the classical PDE approximation models; the required non zero vacuum (energy) states are element of the complementary sub space to the classical variational Hilbert spaces H_0 resp H_1. The model then would allow a correspondingly extended modified SRT including energy "quanta" into Lorentz's theory of electrons, which is claimed to overcome Einstein's mathematical problem to include gravitation forces into his (mathematically well defined) SRT

(B11) (WeH) p. 171: "On the basis of rather convincing general considerations, G. Mie in 1912 pointed out a way of modifying the Maxwell equations in such a manner that they might possibly solve the problem of matter, by explaining why the field possesses a granular structure and why the knots of energy remain intact in spite of the back-and-forth flux of energy and momentum". This concept is in line with our proposed compactly embedded "fermions" energy Hilbert space H_1 into $H_{1/2}$, where a $H_{1/2}$-based (energy) field possesses a H_1-based granular (matter) structure
(B12) the notion "symmetry" with all its mathematical (group theory, Lie groups) and physical (gauge symmetry, Higgs' symmetry break down, hidden symmetry) flavors should be replaced by the notion "self-adjointness", which is the central property of a linear operator of the Hilbert space based spectral theory in the context of the Friedrichs (self-adjoint) extension of a linear symmetric operator; a self-adjoint operator allows the definition of a related "energy" inner product /norm, (VeW)

(B13) (ChD1) pp. 1, 10-13: "Einstein's field equations is about an unified theory of space-time and gravitations; the space-time \((\mathbb{M}, g)\) is the unknown, where \(\mathbb{M}\) denotes a 4-dimensional manifold; one has to find an Einstein metric \(g\), fulfilling the Einstein field equations. This is basically the equality \(\mathcal{G} = \mathcal{T}\), whereby \(\mathcal{G}\) denotes the Einstein tensor and \(\mathcal{T}\) denotes the energy momentum tensor (e.g. the Maxwell equations). The Einstein-Vacuum equations (in the absence of matter, i.e. \(\mathcal{T} = 0\)) are given by \(\mathcal{R} = 0\), whereby \(\mathcal{R}\) denotes the Ricci tensor. Its simplest solution is the Minkowski space-time with its canonical coordinate system. Apart from Minkowski space-time it is not known, if there are any smooth, geodesically complete solution, which becomes flat at the infinity on any given spacelike direction. The main difficulties one encounters in the proof for the Cauchy Einstein-Vacuum equations with given initial data are: (1) the problem of coordinates (2) the strongly nonlinear hyperbolic features of the Einstein equations. The problem of coordinates comes along with the concept of manifolds. To write the equations in a meaningful way, one seems forced to introduce coordinates. Such coordinates seem to be necessary even to allow the formulation of well-posed Cauchy problems and a proof of a local in time existence result. Nevertheless, as the particular case of wave coordinates illustrates, the coordinates may lead, in the large, to problems of their own."

The concept of manifolds was introduced by Riemann to model the physical phenomenon "force" as a consequence of a hyperbolic geometry, replacing Newton's concept of a "far distance force" by a "near distance force" concept. The alternative approach of this homepage is about keeping the "Riemann's formula" "force" = "geometry" ((WeH3) III, 15), but introducing a truly geometric Hilbert space framework coming along with an inner product (whereby the related Hilbert space norm defines a metric), alternatively to the current affine connected manifold framework (based on the concepts "affine connexion", "covariant derivative" and "geodesics of an affine connexion"; Schrödinger E., Space-Time Structure) to enable the definitions of a metric and an (at least) exterior product. We emphasize that the affine connexion concept is not suitable to overcome open contact body problems in the context of interaction of elementary particles

(B14) The Newton gravitation model is about the potential equation. The counterpart of the underlying Laplace operator of the potential equation in the Einstein gravitation model \(\mathcal{G} = \mathcal{T}\) (whereby \(\mathcal{G}\) denotes the Einstein tensor and \(\mathcal{T}\) denotes the energy momentum tensor) is the Einstein tensor \(\mathcal{G}\). The weak variational formulation of the potential equation leads to the energy Hilbert space \(\mathcal{H}\). Its norm is equivalent to the \(L^2\)-norm of the gradient of the considered field. If the Newton (\(L^2\)-based variational) gravitation model is interpreted as an approximation on a more accurate \(L^1/2\)-based variational potential equation model the corresponding potential solution can be interpreted as a compact disturbance of the Newton potential solution, which could cover all strongly nonlinear hyperbolic features of the Einstein equations enabled by "Convex Analysis in General Vector Spaces" (Zalinescu C.)

(B15) the chaotic inflation state of the early universe does not match to the second law of thermodynamics. The latter requires a permanent increase of the entropy of the universe over time, i.e. the cosmos started with an incredible low probability, but also with an incredible high ordered state, "at the same point in time" ((PeR) 2.6, "Understanding the way the Big Bang was special"). The energy/action minimizing principle is equivalent to a corresponding orthogonal projection onto a compactly embedded sub-space. This orthogonal projection can be interpreted as an extended model (symmetry = selfadjointness) of the Higgs "spontaneous symmetry break down" mass generation model. Therefore, this orthogonal projection becomes a "mass generation" operator in the sense that "mass is essentially the manifestation of the vacuum energy". In other words, there is a Hilbert space model for a perfect ordered (only vacuum energy) system until a very unlikely first event of such a projection occurred; this is because the "fermions" Hilbert (sub-) space is compactly embedded into the overall energy Hilbert space. Therefore, from a probability/statistics theory perspective the probability of this first event is zero with respect to the underlying Lebesgue measure. It might sound sophisticated or even strange, but it is just the same probability, when picking a rational number out of the field of real (including irrational and transcendental) numbers on the x-axis (which is the domain framework required to define continuous functions)
(B16) the gauge (symmetry) groups $S_3 \times SU_2 \times U_1$ of the SMEP (and the still missing graviton gauge group, (KaM)) could be replaced by certain self-adjoint properties of related linear operators; Fourier waves could be replaced by Calderon wavelets, while from a group theoretical perspective Calderon's wavelet and Gabor's windowed Fourier transformations are the same. They are both built by the same construction principle based on the affine-linear group resp. based on the Weyl-Heisenberg group (LoA).

(B17) when changing the variational framework from H_0 to $H_{-1/2}$ the non-linear, non-stationary Navier-Stokes equations with correspondingly reduced regularity assumptions to the initial and boundary value functions become well posed, while at the same time the Serrin gap problem disappears; from a physical modelling perspective the extended $H_{1/2}$ norm based energy measure of the non-linear term does not vanishes, in opposite to the current H_1 energy norm; at the same point in time the potential incompatibility of the initial boundary values of the NSE with the Neumann problem based prescription of the pressure at the bounding walls dissappears.
References

(BaB) Bagchi B., On Nyman, Beurling and Baez-Duarte’s Hilbert space reformulation of the Riemann Hypothesis, Indian Statistical Institute, Bangalore Centre, (2005), www.isibang.ac.in

(BaJ) Barbour J., Scale invariant gravity, particle dynamics, gr-qc/0211021

(BeB) Berndt B. C., Ramanujan’s Notebooks, Part I, Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1985

(BeB1) Berndt B. C., Number Theory in the Spirit of Ramanujan, AMS, Providence, Rhode Island, 2006

(BeI) Belogrivov, I. I., On Transcendence and algebraic independence of the values of Kummer’s functions, Translated from Sibirskii Matematicheskii Zhurnal, Vol. 12, No 5, 1971, 961-982

(BiI) Biswas I., Nag S., Jacobians of Riemann surfaces and the Sobolev space $H_{1/2}$ on the circle, Mathematical Research Letters, 5, 1998, pp. 281-292

(BiN1) Bingham N. H., Szegő’s theorem and its probabilistic descendants, Probability Surveys, Vol. 9, 287-324 2012

(BoJ1) Bourgain J., Kozma G., One cannot hear the winding number, J. Eur. Math. Soc. 9, 2007, pp. 637-658

(BoM) Bonnet M., Boundary Integral Equations Methods for Solids and Fluids, John Wiley & Sons Ltd., Chichester, 1995

(BrK) Braun K., A new ground state energy model, www.quantum-gravitation.de

(BrK1) Braun K., An alternative Schroedinger (Calderon) momentum operator enabling a quantum gravity model

(BrK2) Braun K., Global existence and uniqueness of 3D Navier-Stokes equations

(BrK3) Braun K., Some remarkable Pseudo-Differential Operators of order -1, 0, 1

(BrK4) Braun K., A Kummer function based Zeta function theory to prove the Riemann Hypothesis and the Goldbach conjecture

(BrK5) An alternative trigonometric integral representation of the Zeta function on the critical line

(BrK6) Braun K., A distributional Hilbert space framework to prove the Landau damping phenomenon

(BrK7=BrK1) Braun K., An alternative Schroedinger (Calderón) momentum operator enabling a quantum gravity model

(BrK8) Braun K., Comparison table, math. modelling frameworks for SMEP and GUT

(BrK10) Braun K., J. A. Nitsche´s footprints to NSE problems, www.navier-stokes-equations.com

(BrK related papers) www.navier-stokes-equations.com/author-s-papers

(BrR) Brent R. P., An asymptotic expansion inspired by Ramanujan, rpb@cslab.anu.edu.au

(CeC) Cercignani C., Theory and application of the Boltzmann equation, Scottish Academic Press, Edinburgh, Lonson, 1975

(ChD) Christodoulou D., Klainerman, Asymptotic properties of linear field equations in Minkowski space, Comm. Pure Appl. XLIII, 137-199, 1990

(DrM) Dritschel M. A., Rovnyak, J., Operators on indefinite inner product spaces

(EhP) Ehrlich P., Contemporary infinitesimalist theories of continua and their late 19th- and early 20th-century forerunners, arXiv.org 180.03345, Dec 2018

(EiA) Einstein A., Grundzüge der Relativitätstheorie, Vieweg & Sohn, Braunschweig, Wiesbaden, 1992

(ElL) Elaissaoui L., Guennoun Z. El-Abidine, Relating log-tangent integrals with the Riemann zeta function, arXiv, May 2018

(ElL1) Elaissaoui L., Guennoun Z. El-Abidine, Evaluation of log-tangent integrals by series involving zeta(2n+1), arXiv, May 2017

(FaK) Fan K., Invariant subspaces of certain linear operators, Bull. Amer. Math. Soc. 69 (1963), no. 6, 773-777

(FaM) Farge M., Schneider K., Wavelets: application to turbulence, University Warnick, lectures, 2005

(FaM1) Farge M., Schneider K., Wavelet transforms and their applications to MHD and plasma turbulence: a review, arXiv:1508.05650v1, 2015

(FeR) Feynman R. P., Quantum Electrodynamics, Benjamin/Cummings Publishing Company, Menlo Park, California, 1961

(GaL) Garding L., Some points of analysis and their history, Amer. Math. Soc., Vol. 11, Providence Rhode Island, 1919

(GiY) Giga Y., Weak and strong solutions of the Navier-Stokes initial value problem, Publ. RIMS, Kyoto Univ. 19 (1983) 887-910

(GôK) Gödel, K., An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations of Gravitation, Review of Modern Physics, Vol. 21, No. 3, 1949

(GrJ) Graves J. C., The conceptual foundations of contemporary relativity theory, MIT Press, Cambridge, Massachusetts, 1971

(HaJ1) Hartle J. B., Hawking S. W., Wave function of the Universe, Physical Review, D, Vol. 28, No. 12, 1983

(HaS1) Hawking S. W., Particle Creation by Black Holes, Commun. Math. Phys. 43, 199-220, 1975

(HeJ) Heywood J. G., Walsh O. D., A counter-example concerning the pressure in the Navier-Stokes equations, as $t \to 0^+$, Pacific Journal of Mathatics, Vol. 164, No. 2, 351-359, 1994

(HeW) Heisenberg W., Physikalische Prinzipien der Quantentheorie, Wissenschaftsverlag, Mannhein, Wien, Zürich, 1991

(HuA) Hurwitz A., Über einen Satz des Herrn Kakeya, Zürich, 1913

(KaM) Kaku M., Introduction to Superstrings and M-Theory, Springer-Verlag, New York, Inc., 1988

(KIB) Kleiner B., Lott J., Notes on Perelman’s papers, Mathematics ArXiv

(KnA) Kneser A., Das Prinzip der kleinsten Wirkung von Leibniz bis zur Gegenwart, B. G. Teubner, Leipzig, Berlin, 1928

(KoA) Kolmogoroff A., Une contribution à l’étude de la convergence des séries de Fourier, Fund. Math. Vol. 5, 484-489

(KrK) Krogh K., Origin of the Blueshift in Signals from Pioneer 10 and 11, astro-ph/0409615

(LaE) Landau E., Die Lehre von der Verteilung der Primzahlen Vol 1, Teubner Verlag, Leipzig Berlin, 1909

(LaE1) Landau E., Uber die zahlentheoretische Function $\varphi(n)$ und ihre Beziehung zum Goldbachschen Satz, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Vol 1900, p. 177-186, 1900

(LaE2) Landau E., Die Lehre von der Verteilung der Primzahlen Vol 2, Teubner Verlag, Leipzig Berlin, 1909

(LaE6) Landau E., Über die Fareyreihe und die Riemannsche Vermutung, Göttinger Nachrichten (1932), 347-352

(LaJ) An Elementary Problem Equivalent to the Riemann Hypothesis, https://arxiv.org

(LIIJ) Linnik J. V., The dispersion method in binary additive problems, American Mathematical Society, Providence, Rhode Island, 1963

(MiT) Mikosch T., Regular Variation, Subexponentiality and Their Application in Probability Theory, University of Groningen

(MoJ) Morgan J. W., Tian G., Ricci Flow and the Poincare Conjecture, Mathematics ArXiv

(NiJ) Nitsche J. A., lecture notes, approximation theory in Hilbert scales

(NiJ1) Nitsche J. A., lecture notes, approximation theory in Hilbert scales, extensions and generalizations

(NiJT) Nielsen J. T., Guffanti A., Sarkar S., Marginal evidence for cosmic acceleration from Type Ia supernovae, Sci. Rep. 6, 35596, doi: 10.1038/srep35596 (2016), nature.com/articles/srep35596

(OIF1) Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W., NIST Handbook of Mathematical Functions

(OIR) Oloff R., Geometrie der Raumzeit, Vieweg & Sohn, Braunschweig/Wiesbaden, 1999

(PaY) Pao Y.-P., Boltzmann Collision Operator with Inverse-Power Intermolecular Potentials, Leopold Classic Library, 1974 (New York University, Courant Institute of Mathematical Sciences, Magneto-Fluid Dynamics Division)

(PeO) Perron O., Die Lehre von den Kettenbrüchen, Volumes 1-2, Nabu Public Domain Reprint, copyright 1918 by B. G. Teubner in Leipzig

(PeR1) Peralta-Fabi, R., An integral representation of the Navier-Stokes Equation-I, Revista Mexicana de Fisica, Vol 31, No 1, 57-67, 1984

(PiJ) J. Plemelj, Potentialtheoretische Untersuchungen, B.G. Teubner, Leipzig, 1911
(PoE) Postnikov E. B., Singh V. K. Continuous wavelet transform with the Shannon wavelet from the point of view of hyperbolic partial differential equations, arXiv:1551.03082

(PoG1) Polya G., Über eine neue Weise bestimmte Integrale in der analytischen Zahlentheorie zu gebrauchen, Göttinger Nachr. (1917) 149-159

(PoG4) Polya G., Arithmetische Eigenschaften der Reihenentwicklung rationaler Funktionen, J. Reine und Angewandte Mathematik, 151, 1921, 1-31

(PoD) Pollack D., Initial Data for the Cauchy Problem in General Relativity, General Relativity Spring School 2015, Junior Scientist Andrejewski Days, March 22nd to April 4th, 2015, Brandenburg an der Havel, Germany

(PoP) Poluyan P., Non-standard analysis of non-classical motion; do the hyperreal numbers exist in the quantum-relative universe?

(PrK) Prachar K., Primzahlverteilung, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1957

(RiB) Riemann B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, transcribed by D. R. Wilkins, 2000

(RoC) Rovelli C., Quantum Gravity, Cambridge University Press, Cambridge, 2004

(RoC1) Rovelli C., The Order of Time, Penguin Random House, 2018

(RoC2) Rovelli C., Reality is not what it seems, Penguin books, 2017

(RoC3) Rovelli C., Seven brief lessons on physics, Penguin Books, 2016

(RoJ) Roberts J. T., Leibniz on Force and Absolute Motion, Philosophy of Science, Vol 70, No 3, pp. 553-573, 2003

(RyG) Rybicki, G. B., Dawson’s integral and the sampling theorem, Computers in Physics, 3, 85-87, 1989

(ScE1) Schrödinger E., My View of the World, Ox Bow Press, Woodbridge, Connecticut, 1961

(ScL) Scheffer L. K., Conventional Forces can Explain the Anomalous Acceleration of Pioneer 10, gr-qc/0107092

(SeA) Sedletskii A. M., Asymptotics of the Zeros of Degenerated Hypergeometric Functions, Mathematical Notes, Vol. 82, No. 2, 229-237, 2007

(SeE) Seneta E., Regularly Varying Functions, Lecture Notes in Math., 508, Springer Verlag, Berlin, 1976

(SeH) Seifert H., Threlfall W., Variationsrechnung im Grossen, Chelsea Publishing Company, New York, 1951

(SeJ) Serrin J., Mathematical Principles of Classical Fluid Mechanics

(ShF) Shu F. H., Gas Dynamics, Vol II, University Science Books, Sausalito, California, 1992

(ShM) Scheel M. A., Thorne K. S., Geodynamics, The Nonlinear Dynamics of Curved Spacetime

(ShM1) Shimoji M., Complementary variational formulation of Maxwell's equations in power series form

(SmL) Smolin L., Time reborn, Houghton Miflin Harcourt, New York, 2013

(Smi1) Smith L. P., Quantum Effects in the Interaction of Electrons With High Frequency Fields and the Transition to Classical Theory, Phys. Rev. 69 (1946) 195

(StE) Stein E. M., Conjugate harmonic functions in several variables

(StE1) Stein E. M., Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993

(SuL) Susskind L., Friedman A., Special relativity and classical field theory, Basic Books, New York, 2017

(SzG) Szegö, G., Orthogonal Polynomials, American Mathematical Society, Providence, Rhode Island, 2003

(TaM) Tajmar M., de Mantos C. J., Coupling of Electromagnetism and Gravitation in the Weak Field Approximation, https://arxiv.org/

(ToV) Toth V. T., Turyshhev S. G., The Pioneer anomaly, seeking an explanation in newly recovered data, gr-qc/0603016

(TsB) Al`Tsuler B. L., Integral form of the Einstein equations and a covariant formulation of the Mach´s principle, Soviet Physics Jetp, Vol. 24, No. 4, 1967

(WhJ2) Wheeler J. A., At home in the universe, American Institute of Physics, Woodbury, 1996

(ZhB) Zhechev B., Hilbert Transform Relations

(ZyA) Zygmund A., Trigonometric series, Volume I & II, C