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Origin of the Universe: A Hint from Eddington-inspired Born-Infeld gravity
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We study the ‘initial state’ of an anisotropic universe in Eddington-inspired Born-Infeld gravity
filled with a scalar field, whose potential has various forms. With this purpose, the evolution of a
spatially-flat, homogeneous, anisotropic Kasner universe is studied. We find an exact evolution of
the universe for each scalar potential by imposing a maximal pressure condition. The solution is
shown to describe the initial state of the universe. The state is regular if the scalar potential does
not increase faster than the quadratic power for large-field values. We also show that the anisotropy
does not raise any defect in the early universe, contrary to the case of general relativity.
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I. INTRODUCTION

What is the origin of the universe? This is one of the
oldest quests of humans. After the discovery of Hubble’s
law in 1929, people started to believe that the universe
originated from the big bang. However, the big-bang
theory was soon confronted with obstacles such as the
flatness, horizon, and monopole problems. Most of them
were resolved by introducing inflation theory in 1980.
However, we still confront many problems when trying
to discover the origin of the universe, such as the origin
and physics before and at an early stage of inflation. In
addition, even inflation theory connotes problems such
as fine-tuning [1] and a low-entropy initial state [2]. In
the framework of Einstein’s general relativity (GR), the
question on the initial state of the universe is hard to
answer because GR actually predicts that a singularity
appears at the beginning of the universe.

A few proposals avoid initial singularities. An interest-
ing proposal is to assume that the universe begins with
no origin through eternal inflation [3]. However, infla-
tion requires extremely special initial conditions. One
may consider the universe to have a quantum cosmolog-
ical origin [4,5]. In fact, this suggestion naturally give
rises to the necessity of quantum gravity and quantum
corrections to GR. One may expect that, with proper
consideration of quantum gravitational effects, a gravi-
tational theory must be free from singularities. In this
work, we show that the Eddington-inspired Born-Infeld
(EiBI) theory of gravity, recently proposed by Banados
and Ferreira [6], provides an opportunity to analyze the
initial state of the universe.
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The EiBI theory of gravity is described by the action
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where |g,,| denotes the determinant of g,,, A is a di-
mensionless parameter that is related to the cosmological
constant, and « is an additional parameter. Throughout
this paper, we use the reduced Planck units, ¢ = 1 =
8mG. In this theory, the metric g, and the connection
I'f,, are treated as independent fields. The Ricci tensor
R, (I') is evaluated solely from the connection, and the
matter field ® couples not with g, but with g,,. In
Refs. [7] and [8], the authors considered a modification
of the Poisson equation in EiBI gravity and obtained
singularity-free solutions for compact stars composed of
pressureless dust and polytropic fluids. In Refs. [9-16],
the cosmological and the astrophysical aspects of the
EiBI theory were studied, and solar system tests showed
that the theory is compatible with all current observa-
tions. An announcement was made that curvature sin-
gularities happen at the surfaces of polytropic stars [17].
However, recently, the surface singularity problem was
shown to be resolved by introducing the back-reaction
of the gravity to the equation of state [18]. The initial
state leading to a chaotic inflation was studied in Ref.
[19]. Stars in the EiBI gravity were also studied in Refs.
[20-23] to show that neutron and quark stars are more
massive than their GR counterparts.

Checking the singularity-free nature is important be-
cause it is one of the main motivations of the EiBI theory.
However, a perfect fluid analogy of fundamental particles
is not always successful in extreme situations such as the
early universe. To investigate the non-singular property
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seriously, one needs to deal with a universe filled with
fields whose equation of states vary depending on physi-
cal situations. With this in mind, we consider a universe
filled with a real scalar field with the action

S = [ atav/ll |- 3 @u)0.0) - Vi) . )

The equation of state parameter of the scalar field in
homogeneous space-time depends on the relative ratio
between the kinetic energy and the potential energy, w =
(¢?/2V —1)/(4?/2V + 1). If the ratio is large, w — 1,
and if it goes to zero, w — —1. We cannot determine
the initial state of the universe filled with the scalar field

J

from experience with a perfect fluid because the equation
of state varies with time.

II. ANISOTROPIC UNIVERSE WITH A
SCALAR FIELD

Since the discovery of Planck observations [24] that
nontrivial axial anomalies exist in the cosmic microwave
background radiation, the anisotropic universe has be-
come a new trend in cosmology and astrophysics. The
metric for a spatially-flat, homogeneous space-time is

gudatde” = —dt* + a*(t) [62(ﬁ++‘/§ﬁ*)dx2 4 2B =V3B) gy2 | o482 (3)

where a(t) and (1 (t) denote the scale factor and the
anisotropies, respectively. Most previous works on EiBI
gravity were based on a perfect fluid. Most interestingly,
the universe driven by radiation is free from the initial
singularity [6]; the universe experiences either a bouncing
with a finite size for Kk < 0 or a state of minimum size
that takes infinite time to reach from the present time
for kK > 0. The latter is interpreted as the “nonsingular
initial state” of the universe. The “nonsingular initial
state” is also present if the equation of state parameter,

J

w = p/p, of a fluid is positive [25]. Another nonsingular
initial state is known to exist as a de Sitter space-time for
a dust-filled universe with w = 0 [25] and in the presence
of a massive scalar field [19].

The Hubble parameter for a gravity+scalar field in
isotropic space-time was first obtained in Eq. (46) in Ref.
[26] with A = 1. There, GR was also shown to recover to
leading order at later times for an expanding universe.
In the case of an anisotropic universe of the Kasner type,
the Hubble parameter is modified to be

H = m{—;<>\+v+;o}2> V’(¢)¢si\}§(>\+v—“f)
x [(A+V+;<i>2)3/2(>\+v—;¢2)3/2+i(A+V+;aﬁz)(qéz_v—x)Jricjr/z}, (4)

where X = A/k, ¢ = & + ¢2, and we are interested
in the case with x, A > 0. The isotropic space version
of this equation was given in Ref. [27]. The anisotropy
satisfies

C+
+ = —42 s (5)
A+V+2)a?

which was obtained exactly in the same way as that in
Ref. [25]. The scalar field equation is given by

b+ 3Ho+V'(¢) =0. (6)

1. Constant Potential Case

The EiBI theory in vacuum is known to be equivalent
to GR [6]. In the case of a constant potential, V (¢) = Vo,
the potential plays the same role as a cosmological con-
stant with A = Vo + A — 1/k if one ignore the scalar
kinetic energy. Even with scalar dynamics, one can find
an exact solution, which resembles the “nonsingular ini-
tial state” in the perfect fluid case. Equation (6) is in-
tegrated to give ¢ = /2 (1/k + A)(ac/a)?, where a, is
a critical scale whose physical implication will be clear
soon. The Hubble parameter becomes
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Fig. 1. The Hubble parameter with respect to the scale
factor for various cosmological constants. Here, the cosmo-
logical constant is given by A = 0, 0.1/k, 0.5/k, and 1/k,
respectively, from the bottom.
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The Hubble parameter (7) and the scalar field evolution
equation (9) approximately describes the case that the
scalar potential approaches a constant value.

III. INITTAL STATE OF THE UNIVERSE

From experience with a perfect fluid in Ref. [25], the
initial state of the universe appears to depend on the
equation of state for its matter content for positive k.
We inspect whether this dependence is extendable to the
case of a scalar field or not. In Ref. [19], the authors have
shown that a maximal pressure condition,

1, _ do
V() =A=0 )

where U(¢) = /2(V(¢) + N), (10)

combined with the Hubble parameter equation

H=-2U'6), (1)

(1+ kA) (1_

(

where we take the positive sign in Eq. (4) because we
want to describe an expanding universe. The Hubble
parameter is plotted in Fig. 1. The terms inside the
square brackets can be expanded as, for large a,
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The Hubble parameter goes to zero at the minimum
value of the scale factor, a = a.. Around that value,
the scale factor behaves as

a(t) = ac + 6pe>V 7, (8)
which presents the same “nonsingular initial state” as
that for the perfect-fluid.

The scalar velocity with respect to the scale factor can
also be written as

2a12

oo

1/2
al? 3/2 6rc?\ a
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provides an exact solution, which was called the maximal
pressure solution (MPS), of the equation of motion of
the EiBI gravity. In Eq. (10), we choose the positive
sign. Solutions with % = —U can be obtained by letting
t — —t. The reality of ¢ requires V(¢) > —A. The early-
time behavior of the MPS describes the initial state of
the universe [19]. Now, the MPS is given by

) / t
(o) E/ 4P :/ dr = o(t) =T Ht). (12)

U(¢')
Equation (11) is integrated to give the scale factor
a 2 2U —2/3
“=—JU'9)=—35 — alt) =a[U(@)] " 13)

a 3

where ag is an integration constant. The metric function
describing the anisotropy is

boercx
Bt = dt$ = ﬁ(t —tp). (14)
0 0

The divergence of the anisotropy, I+ = Bi J/H =
—3c+/(2a3U’(¢)), happens only when H = 0. However,
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the geometry there is nonsingular.

1. The Initial State

We next write the early-time behaviors of the universe
for various nonsingular potentials. The ‘initial state’ of
an expanding universe is determined by the asymptotic
form of the scalar potential for large-field values. This
is simply because the size of the scalar field should be
very large in the early universe. For the initial state
in Eq. (10), the scalar field always increase with time,
é > 0. Therefore, once <;S(o< U(¢)) is positive at a time
to, it is always positive at earlier times ¢ < tp, implying
¢ — —oo in the early universe. Let us assume that the
asymptotic form of the scalar potential takes the form

2
n l’L n
U = plg| M=V = 7¢2 T2 (15)

where we choose p > 0 without loss of generality. For
the case of n = —1, the scalar potential approaches a
constant, and the corresponding early time behavior is
given in Eq. (8).

For n #0, —1, from Eq. (12), the MPS behaves as

_ 1
(npt)s’
2(n+1)
a(t) = agU™?/3 = ﬂ(nut) s (16)
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For n > 0, the domain of time is ¢ € (0,00). The scalar
field evolves from —oco to 0 with time. The scale factor
monotonically increases from 0 to co. This describes a
power-law-inflating or decelerating universe, respectively
for 0 < n < 2 orn > 2. Observing backward in time,
the scale factor decreases to zero in a finite time, and the
geometry becomes singular at ¢ = 0. Therefore, in this
case, the universe starts from a singularity similar to the
case of big-bang cosmology, and the nonsingular initial
state is absent. The case with n = 0 is described by an
initial de Sitter universe, which was studied in Ref. [19].
For n < 0, (# —1), the domain of time is (—o0, 0], and
the scalar field runs from —oo to 0. For —1 < n < 0, the
scale factor expands with accelerating rates. For large
negative t, both the acceleration and the velocity of the
scale factor go to zero. Therefore, an initial singularity
is absent at past infinity. If ¢ = 0, the universe begins
with a flat space-time. For cases with n < —1, U(¢) — 0
(V(¢) — —X) for large |¢|. Because the potential is al-
most constant, it rescales the cosmological constant to be
negative, A — —1/k < 0. As |¢| decreases, U increases
and even becomes divergent at |¢| = 0. Therefore, the
universe will be divided into two distinct classes accord-
ing to the sign of ¢. For ¢ < 0, the Hubble parameter,
H x —U’, is negative. The scale factor decreases with
time from infinity, and the initial state of the universe
is given by a contracting phase. On the other hand, for

¢ > 0, we have an expanding universe. However, the
early universe corresponds to the small ¢ area where the
potential diverges at ¢ = 0. We discard this possibility
because it is not acceptable physically. Summarizing,
a nonsingular initial state exists as an exact solution,
Eq. (12), when the asymptotic form of the scalar poten-
tial does not increase faster than the quadratic power for
large-field values. Especially for n < —1, when the po-
tential decreases to —A asymptotically, the initial state
is given by a contracting universe that will expand af-
ter a bounce. An extreme of this type is an exponential
potential of the form U o e??.

2. MPS as a Fixed Point in the Past

Let us examine the stability of the MPS, Eq. (12), and
show that it is a fixed point in the past. We perturb the
scalar field and the Hubble parameter by adding small
perturbations ¢ (t) and h(t) as

3t = UG0) [1 + ev(t)],
H(®) = ~2U"(6(0) (1 + (0], (17)

where ¢ and H will reproduce the MPS if ¢» = 0 = h.
Putting Eq. (17) into the equation of motions, Eqgs. (6)
and (4), we get, to first order,

. 2
b—2U" (¢)h =0, h= (%ﬂ/% n i"él});p (18)

Combining the two equations, we have an equation for

(IR
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Using V2AU’" = 4 1og U(¢) to the present order, we get
¥ =1l (9) % x eV, (19)

where t. = 1/(24/2 + %2) Using the relation UU’ =
0

U, we get

ol/te
v = YomgEE
2 82 1 et/te
b= T3 A T T | T
. t
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For the specific forms of the potential in Eq. (15) and
the solutions in Eq. (16), the perturbation becomes

+1

U($)d = thop™ 3 (nput) 5w e¥e. (21)
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For n > 0, the perturbations vanish at ¢ = 0 where ¢ —
—o0. The perturbations grow with time exponentially.
For n < 0, the time runs in (—o0,0]. The perturbations
exponentially grow for ¢t < (n+ 1)t./(—3n), but start to
decrease for ¢ > (n + 1)t./(—3n). For both cases, the
perturbations exponentially grow at early times. This
implies that the MPS is a fixed point in the past. For
n < —1, the perturbations also vanish at ¢ = 0, when
the scale factor goes to zero. Because the scale factor
monotonically decreases, this corresponds to a later time
attractor shrinking to a singularity. Note, however, that
this is because the scalar potential has an unphysical
form.

IV. SUMMARY AND DISCUSSION

In this work, we study the initial state of an anisotropic
universe driven by a scalar field having various poten-
tials with its limiting form V(¢) oc ¢?"*2 in EiBI grav-
ity. We identify the maximal pressure solution (MPS) in
Egs. (12)—(14) as the initial state of the universe. We
show that the initial state of the universe is nonsingu-
lar for n < 0 and that the early universe inflates for
—1 < n < 2. The anisotropy does not generate any
space-time singularity, which is contrary to the case in
GR.

Let us examine the equation of state of the scalar field
for the MPS. The equation of state for the MPS is given
by w=p/p=XA/(2V(¢) + A). For n > —1, the potential
diverges at early time. Therefore, the equation of state
takes after that of dust. In the presence of dust, the
universe experiences a de Sitter expansion in the early
universe [25]. However, in the presence of a scalar field,
the de Sitter state happens only if n = 0. For potentials
with higher or lower powers, diverse behaviors appear.
Therefore, the perfect-fluid analogy is inappropriate to
describe the behavior of the early universe. Mathemat-
ically, this is because the Hubble parameter in Eq. (4)
mainly depends on the first term of Eq. (4), which is
absent in the perfect-fluid counterpart. For the MPS,
the curvature scale satisfies H o ¢". The curvature
scale goes to infinity at initial times for n > 0. On the
other hand, it is finite for n < 0. Therefore, the initial
state of the universe can be described with classical grav-
ity+quantum matter fields for n < 0, which is a merit of
EiBI gravity.

Asking whether the present results hold or not for a
universe driven by other fields such as fermions or gauge
fields is interesting. In the case of a free theory, any
fermion and gauge field will satisfy the Klein-Gordon
equation. In addition, the mazimal pressure condition
in Eq. (10), which represents the boundary between the
allowed and the forbidden regions, is determined only
by the energy density and the pressure, irrespective of
the species of the particles inside the universe. Since
the present ‘initial state’ is given by the condition, simi-

lar states will exist even for such universes. At present,
we cannot distinguish whether the initial state of our
universe is regular or not because we do not know the
asymptotic form of the matter field that rules the early
universe. Quarks have asymptotic freedom in high den-
sity. If the matter dominating the early universe has
similar asymptotic freedom, then the initial state of the
universe will be regular. On the other hand, if the in-
teractions between the matters are enhanced for high
energy, then the initial state will be singular. In the
present work, we followed the original proposal of the
EiBI gravity in Ref. [6], where matter was independent
from the connection. If one relax this assumption, a more
general version of EiBI gravity with richer phenomenol-
ogy will appear. Studying whether the theory may evade
the initial singularity happening in the presence of fields
interacting with the connection would be interesting.
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